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Abstract

For many years the Diffusion Decision Model (DDM) has successfully accounted for behavioral

data from a wide range of domains. Important contributors to the DDM’s success are the

across-trial variability parameters, which allow the model to account for the various shapes of

response time distributions encountered in practice. However, several researchers have pointed

out that estimating the variability parameters can be a challenging task. Moreover, the numerous

fitting methods for the DDM each come with their own associated problems and solutions. This

often leaves users in a difficult position. In this collaborative project we invited researchers from

the DDM community to apply their various fitting methods to simulated data and provide advice

and expert guidance on estimating the DDM’s across-trial variability parameters using these

methods. Our study establishes a comprehensive reference resource and describes methods that

can help to overcome the challenges associated with estimating the DDM’s across-trial variability

parameters.

keywords: Diffusion Decision Model, across-trial variability parameters, parameter

estimation
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Estimating Across-Trial Variability Parameters of the Diffusion

Decision Model: Expert Advice and Recommendations

1 Introduction

The Diffusion Decision Model (DDM) has a long and successful history of accounting

for response time (RT) and accuracy data from a wide range of domains, including lexical

decision (Yap, Sibley, Balota, Ratcliff, & Rueckl, 2015; Ratcliff, Gomez, & McKoon, 2004;

Wagenmakers, Ratcliff, Gomez, & McKoon, 2008), memory-retrieval (White, Kapucu, Bruno,

Rotello, & Ratcliff, 2014; McKoon & Ratcliff, 1996), perceptual decision-making (Ratcliff,

2002; Smith, Ratcliff, & Wolfgang, 2004; Smith, Ratcliff, & Sewell, 2014), as well as data from

neurophysiological studies (Kühn et al., 2011, Philiastides, 2006; for reviews see Forstmann,

Ratcliff, & Wagenmakers, 2016, Ratcliff & McKoon, 2008, Ratcliff, Smith, Brown, & McKoon,

2016, Smith & Ratcliff, 2009). The DDM belongs to the class of sequential sampling models for

two-choice RT tasks (Ratcliff, 1978; Ratcliff et al., 2004). It conceptualizes RT and accuracy as

the result of the accumulation of noisy information over time toward two absorbing boundaries.

Figure 1 illustrates the components of the model. The four main parameters are boundary

separation a, drift rate v, starting point z, and non-decision time Ter. Boundary separation is the

distance between the response boundaries and determines the trade-off between response speed

and accuracy. Greater boundary separation means that more information needs to be accumulated

to trigger a response, which results in longer RTs and higher accuracy. Drift rate v represents

the quality of the information that is being accumulated. Higher drift rate means that the mean

rate of information accumulation is quicker, which leads to faster and more accurate responses.

Starting point z represents an a priori bias towards one of the two response options. A starting

point higher than the midpoint between the boundaries, a/2, means that less information needs

to be accumulated to reach the upper boundary, and the corresponding response option is chosen

faster and more frequently. Non-decision time represents processes not related to the decision

process, such as stimulus encoding or response execution. In addition to these main parameters,

the DDM includes three across-trial variability parameters that we discuss next.
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Figure 1: Drift diffusion model (DDM) and its parameters. See section 1 for details.

A key factor in the DDM’s success is its ability to account for the different and varied

shapes of the RT distributions in a wide range of experimental paradigms. For example, a typical

phenomenon in RT experiments is that mean RTs differ between correct and error responses.

Such patterns bedevilled early sequential sampling models and several authors suggested adding

across-trial variability parameters to account for these phenomena (Laming, 1968; Ratcliff, 1978;

Ratcliff & Tuerlinckx, 2002; Smith & Vickers, 1988; Van Zandt & Ratcliff, 1995). Specifically,

allowing the starting point of the accumulation process to vary across trials enables models to

produce fast errors (Laming, 1968), whereas allowing the drift rate of the accumulation process

to vary across trials enables models to produce slow errors (Ratcliff, 1978). These variability

parameters allow the DDM to account for the benchmark result that errors tend to be slower than

correct responses when accuracy is high, and errors tend to be faster than correct responses when

accuracy is low. Moreover, using a combination of both types of variability enables the DDM to

also account for crossover patterns where errors are slower than correct responses when accuracy

is low, and errors are faster than correct responses when accuracy is high (Ratcliff, McKoon, &

van Zandt, 1999; Ratcliff & Rouder, 1998; Wagenmakers et al., 2008). In addition, Ratcliff and

Tuerlinckx (2002) have suggested that an across-trial variability component in the non-decision
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time parameter might be needed to account for experimental manipulations that affect the leading

edge of the RT distribution. The lexical decision data in Ratcliff et al. (2004), for example,

required across-trial variability in non-decision time to account for a shift in the 10th percentile

of the RT distribution.

Although across-trial variability parameters clearly play an important role in the DDM’s

ability to fit empirical data, several authors have reported difficulties in estimating the parameter

values. For example, Lerche and Voss (2017) assessed the retest reliability of DDM parameter

estimates over two separate sessions using a lexical decision task, a recognition memory task,

and an associative priming task. In their model fits, Lerche et al. only allowed for across-trial

variability in non-decision time but not in drift rate or starting point. Their results for the lexical

decision task, for instance, showed that the estimated variability in non-decision time correlated

only modestly to weakly between sessions (r = .20− .55). On the other hand, estimates for the

four main DDM parameters (i.e., starting point, drift rate, boundary separation, and non-decision

time) correlated modestly to strongly between sessions (r = .30− .90). Results for the recognition

memory and associative priming tasks were similar. Taken together, the results of Lerche et

al.’s study suggest that the DDM’s main parameters can be estimated reliably whereas the retest

reliability of the variability in non-decision time is notably lower. Results from Lerche, Voss,

and Nagler (2017) suggest that this lower retest reliability is due to a lack of true score stability,

rather than unreliable estimation; in simulation studies they found a high correlation between true

values and estimates of the variability in non-decision time.

In another example, Yap, Balota, Sibley, and Ratcliff (2012) used a large corpus of

lexical decision data that had been collected in two sessions (Balota et al., 2007) to evaluate

the retest reliability of the DDM parameters. To compute the within-session reliability of

the parameter estimates, Yap et al. split the data into halves based on odd and even trials and

computed the correlation between parameter estimates from each half of the data. To assess the

between-session reliability, Yap et al. computed the correlation between parameter estimates

from the first session and parameter estimates from the second session. This analysis showed
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that estimates for the main DDM parameters were strongly correlated within (r = .81− .93) as

well as between experimental sessions (r = .65− .74). However, although estimates of starting

point variability correlated strongly within experimental sessions (r = .81), the estimates for

drift rate and non-decision time variability correlated less strongly within sessions (r = .65 for

both parameters), and correlations between parameter estimates from different sessions were

relatively weak for all three variability parameters (r = .39− .50). Yap et al. explain the low

within-session reliability of the drift rate and non-decision time variabilities with the fact that

both model parameters depend on the distribution of error RTs. Because there are typically

relatively few observations for error responses, these parameters are not well constrained by the

data, which leads to less reliable parameter estimates.

However, Yap et al.’s lexical decision data featured 819 participants with 3374 trials per

participant. Together with a mean error rate of 14.4%, this suggests that there was, on average,

a total of 486 error RTs for each participant. Consequently, when Yap et al. split their data

into two halves to compute the within-session reliability, each half included an average of 243

error responses based on which the across-trial variability parameters could be estimated. If

such a sizable data set is insufficient for reliable estimation, this suggests that estimation of the

across-trial variability parameters in many other applications of the DDM may also be poor.

In functional neuroimaging, one of the fastest growing areas of application of the DDM, there

are often practical limitations on the experimental design and the number of trials that can be

obtained. This raises the question whether factors beyond the number of trials and conditions

can be utilized to improve estimation performance in standard experimental designs.

For example, conventional methods typically fit the DDM on an individual basis and,

therefore, require that sufficient data are available for each participant (e.g., Vandekerckhove &

Tuerlinckx, 2007, Ratcliff, 2002, Voss & Voss, 2007). Recently developed hierarchical Bayesian

methods, on the other hand, use all available data in the group to mutually inform parameter

estimates across participants (Vandekerckhove, Tuerlinckx, & Lee, 2011; Wiecki, Sofer, &

Frank, 2013). Specifically, hierarchical Bayesian models assume that participants’ parameters
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are drawn from a common group-level distribution. Because the participant-level and group-level

parameters are estimated simultaneously, the parameter estimates for individual participants

are informed by the parameter estimates for the rest of the group. This mutual dependence of

the parameter estimates reduces the influence of outliers on group-level parameters and yields

parameter estimates for individual participants with the smallest estimation error (Efron &

Morris, 1977). Hierarchical Bayesian methods might therefore be able to reliably estimate

across-trial variability parameters in situations where conventional methods fail.

However, estimating across-trial variablities in hierarchical Bayesian implementations of

the DDM comes with its own challenges. For example, the HDM package for JAGS (Plummer,

2003) and Stan (Carpenter et al., 2017) implements a version of the DDM’s first-passage

time distribution where all across-trial variability parameters are fixed to 0 (Vandekerckhove

et al., 2011; Wabersich & Vanderkerckhove, 2014). Nevertheless, trial-to-trial variability in the

model parameters can be added using a mixture of first-passage time distributions where the

drift rate parameter, for instance, is sampled from a normal distribution for each draw from the

first-passage time distribution. Unfortunately, in our experience adding the across-trial variability

parameters to the model inevitably leads to erratic behavior of the MCMC chains and a lack

of convergence. Specifically, when we generated 5000 trials from the DDM with across-trial

variability in drift rate but all other across-trial variabilities fixed to 0, fitting a model with a

mixture of first-passage time distributions as described above resulted in MCMC chains that

remained stuck at their initial values. The convergence problem might be resolved by using

another sampler that is more suitable for the DDM, as for example implemented in the HDDM

software package (e.g., Wiecki et al., 2013).

However, deciding which sampling algorithm to use requires expert knowledge and

experience that is often not available to the naive user. Similar knowledge gaps are likely to

also exist for conventional fitting methods, where choosing a suitable numerical optimization

algorithm, for example, requires extensive experience. This leaves the practitioner in a precarious

situation. On the one hand, across-trial variability parameters can be critical to the DDM’s ability
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to fit different data patterns. On the other hand, estimating across-trial variability parameters is

inherently challenging. Obtaining good parameter estimates might critically depend on expert

knowledge that is not available to the average user.

The goal of the present work is, therefore, to conduct a survey of the available methods

and to provide a platform for experts from the DDM community to share their knowledge and

recommendations for estimating the DDM’s across-trial variability parameters. Specifically, we

generated three data sets with numbers of trials and experimental conditions as typically used in

functional neuroimaging or clinical psychology. We invited experts to apply their preferred fitting

methods to the three data sets and give recommendations for estimating across-trial variability

parameters in each scenario.

It should be noted that the present work is not a comprehensive parameter recovery study

but aims to showcase different fitting methods in a typical application. A comprehensive review

on the estimation of the across-trial variability parameters under different experimental designs

and generating parameter values with conventional fitting methods can be found in Ratcliff and

Tuerlinckx (2002).

2 Structure of the Collaborative Project

We generated three synthetic data sets that differed in complexity and invited researchers

from the DDM community to apply their fitting methods to each data set. Collaborators were

asked to provide a short summary of their methods and results, including their parameter

estimates and a measure of the uncertainty associated with the parameter estimates (e.g.,

confidence intervals or credible intervals), and to provide advice for other users, including

descriptions of problems encountered, workaround solutions, and general recommendations. The

invitation letter is available on the project’s Open Science Framework (OSF) site: osf.io/fjy8z/.

2.1 Data Sets

We based the structure of the simulated data on a typical setup for a perceptual decision

experiment with three conditions that differ only in their level of difficulty (i.e., drift rate). The
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data sets were generated from the full DDM using the rtdists (Singmann et al., 2016) R

package (R Core Team, 2015). Each data set was generated with three different drift rates vEasy,

vMedium, vHard for the three experimental conditions, and common values across experimental

conditions for boundary separation a, non-decision time Ter, relative starting point z (i.e., z ∈

[0,1]), across-trial variability in drift rate sv, across-trial variability in non-decision time sTer ,

and across-trial variability in starting point sz. Here v is mean drift rate and sv is the standard

deviation of the normal distribution from which v is sampled, Ter refers to the mean non-decision

time and sTer is the range of the uniform distribution from which Ter is sampled, and z is the

mean relative starting point and sz is the range of the uniform distribution from which the relative

starting point is sampled. Data were generated with the diffusion scale parameter set to s = 1.

Table 1 shows the generating parameter values for each data set. The data and detailed

descriptions are available at osf.io/fjy8z/. Our generating parameter values were based on Matzke

and Wagenmakers’ (2009) survey of parameter values estimated in empirical studies.

2.1.1 Level 1. Level 1 of our collaborative project assessed how well the across-trial

variability parameters can be estimated for an individual participant independent of the four main

DDM parameters. We therefore provided the data-generating values of the main parameters and

asked collaborators to estimate the values of the three across-trial variability parameters. The data

set consisted of 1000 simulated trials for each experimental condition for a single participant.

The data for Level 1 are shown in the top row of Figure 2. Histograms show the RT

distribution for correct (positive x-axis) and incorrect (negative x-axis) responses in the Easy

(left column), Medium (middle column), and Hard (right column) condition. As can be seen, RT

distributions have the typical right skew. The number of error responses is lowest in the condition

with the highest drift rate (i.e., Easy) and increases with decreasing drift rate, thus exhibiting

typical patterns produced by the DDM.

2.1.2 Level 2. Level 2 of our collaborative project assessed how well the across-trial

variability parameters can be estimated for an individual participant when the values of the

main DDM parameters are unknown. We therefore asked collaborators to estimate all DDM
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Table 1

Generating parameter values for synthetic data.

a vEasy vMedium vHard Ter z sv sTer sz

Level 1 1 3.5 2.5 1.5 0.35 0.45 2.2 0.1 0.4

Level 2 0.8 4 3 2 0.43 0.55 1.8 0.1 0.2

Level 3 µk 0.8 4 3 2 0.43 0.55 1.6 0.15 0.3

σk 0.3 1 1 1 0.1 0.02 0 0 0

Individual Participants Level 3

PP1 0.54 3.15 1.66 2.37 0.39 0.51

PP2 1.52 3.54 3.20 1.29 0.49 0.56

PP3 0.32 5.37 2.18 0.03 0.38 0.56

PP4 0.58 4.63 3.22 1.27 0.37 0.54

PP5 0.49 4.78 4.05 0.92 0.45 0.55

PP6 0.86 3.74 3.12 3.18 0.53 0.56

PP7 0.73 5.07 2.58 2.67 0.18 0.50

PP8 0.53 2.91 2.38 2.41 0.54 0.55

PP9 1.27 6.11 1.84 2.07 0.47 0.56

PP10 0.53 6.08 3.45 1.95 0.39 0.56

PP11 0.39 5.87 5.60 1.55 0.24 0.54

PP12 0.48 4.63 5.51 1.17 0.42 0.54

PP13 1.37 4.55 3.85 2.27 0.37 0.57

PP14 1.32 3.72 5.11 2.98 0.49 0.52

PP15 0.71 2.83 1.31 3.10 0.41 0.53

PP16 0.87 3.96 2.47 0.83 0.27 0.55

PP17 0.70 3.84 3.27 2.42 0.39 0.53

PP18 1.11 4.36 3.39 2.76 0.39 0.56

PP19 1.20 5.60 4.09 2.42 0.35 0.57

PP20 0.90 5.37 2.67 2.19 0.37 0.54
Note. µk is the group-level mean for parameter k, σk is the corresponding
group-level standard deviation. The diffusion coefficient was s = 1 for all
data sets. Level 1: data for one participant, main DDM parameters known.
Level 2: data for one participant, main DDM parameters unknown.
Level 3: data for twenty participants, group-level and individual-level
parameters unknown. PP j indicates the generating values for simulated
participant j
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Figure 2: Histograms of simulated RTs for Level 1 and Level 2. Error RTs are shown on the

negative x-axis. MRT is the mean response time, #Err is the number of error RTs out of 1000

simulated trials per condition.
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parameters from the data. The data set again consisted of data of a single participant with 1000

trials for each of the three experimental conditions. Only drift rate differed between experimental

conditions.

The data for Level 2 are shown in the bottom row of Figure 2. RT distributions have a

typical right skew. The number of error responses is lower than for Level 1 due to the higher

drift rates used to generate the data. Nevertheless, there is a total of 468 error RTs available to

characterize the error RT distributions.

2.1.3 Level 3. Level 3 of our project assessed whether pooling data across participants

improves estimation of the group-level across-trial variability parameters. We therefore

generated a hierarchical data set and asked collaborators to estimate the means and standard

deviations of the group-level parameter distributions. The data set consisted of simulated data

of 20 participants with 1000 trials for each of the three experimental conditions. The main

DDM parameters for each participant had been sampled from a common group-level normal

distribution N (µk,σk) with mean µk and standard deviation σk that was truncated to the range of

admissible values for each DDM parameter. Across-trial variability parameters were fixed across

participants.

The data for Level 3 are shown in Figure 3. Histograms show the average number of trials

of 20 simulated participants in each RT bin. The total number of error trials ranged between 150

and 1014, with an average of 498.5.

2.2 Overview of Collaborators and Methods

We received contributions from nine groups of collaborators from the DDM community.

Table 2 summarizes the estimation methods and summary statistics used by our collaborators. As

the collaborators used three main estimation methods, we will group contributions by method. In

what follows we present a brief description of each estimation method followed by a summary

of the main results. The full reports by each team of collaborators can be found in the appendix;

supplementary materials are available on the project’s OSF page (osf.io/fjy8z/).

To foreshadow our main conclusions, all estimation methods used by our collaborators
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Table 2

Estimation methods and measures of uncertainty for parameter estimates used by collaborators.

Collaborator Fitting Method Parameter Estimate Measure of Uncertainty

Annis & Palmeri (Ann) NHB PM 95% HDI

Frank, Krypotos, & Wiecki (Fra) HB PM 95% HDI

Hawkins (Haw) HB PMD 95% HDI

Heathcote (Hea) HB PMD 95% HDI

Servant & Logan (Ser) χ2 BF 95% BCI

Singmann & Kellen (Sin) ML BF 95% BCI

Starns (Sta) χ2 BF L10, 95% CI

Van Ravenzwaaij (Rav) HB PMD 95% HDI

Voss & Lerche (Vos) ML BF 95% BCI
Note. Abbreviations of contributor names are indicated in brackets.
NHB: non-hierarchical Bayesian, HB: hierarchical Bayesian, χ2: χ2-minimization for
RT quantiles, ML: maximum-likelihood estimation.
PM: posterior mean, PMD: posterior median, BF: best fitting parameter.
X% HDI: X% highest density interval, X% BCI: X% bootstrap confidence interval,
X% CI: X% confidence interval, L10: likelihood-based uncertainty interval.
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could accurately recover across-trial variability in non-decision time. Estimates of the across-trial

variability in drift rate and starting point, on the other hand, were associated with considerable

uncertainty and tended to miss the true parameter value by a wide margin.

3 Estimation Methods

3.1 Bayesian Estimation

Five contributions used Bayesian estimation methods. For Levels 1 and 2, these methods

assumed that the DDM parameters were drawn from a parameter-specific prior distribution.

Four of the five contributions (Hawkins, van Ravenzwaaij, Frank et al., and Annis & Palmeri)

based the parameterization of these prior distributions on Matzke and Wagenmakers’s (2009)

survey of published parameter estimates. For Level 3, Annis and Palmeri used a two-step analysis

for the Level 3 data, in which they first obtained parameter estimates for each participant and

subsequently estimated the group-level distributions for these posterior estimates. Heathcote,

Hawkins, van Ravenzwaaij, and Frank et al. used a hierarchical modeling approach that assumed

that participant-level parameters were drawn from a common group-level distribution. These

group-level distributions are characterized by the group-level parameters, which were estimated

from the data.

Heathcote, Hawkins, and van Ravenzwaaij assumed all group-level distributions to

be normal distributions truncated to the range of plausible values of the particular model

parameter (e.g., the distribution of Ter was truncated below at 0). The means of these group-level

distributions were in turn assigned truncated normal prior distributions; Hawkins and van

Ravenzwaaij’s parameterization of these prior distribution was again loosely based on Matzke

and Wagenmakers’s (2009) survey. The standard deviations of the group-level distributions were

assigned gamma prior distributions. Frank et al. assumed different group-level distributions

for the main DDM parameters that were specific to each parameter (e.g., the a parameter was

assigned a gamma distribution). The parameters of these group-level distributions were in turn

assigned gamma or truncated normal prior distributions. The across-trial variability parameters,

on the other hand, were assigned a single common value for all participants that was sampled
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from a half-normal (sv and sTer) or a beta (sz) prior distribution.

Within the Bayesian framework, point estimates for the parameters are obtained by

computing a measure of the central tendency for the marginal posterior distribution of each

model parameter. The contributions reported here used the posterior mean or posterior median.

Uncertainty about parameter estimates is described by the width of the marginal posterior

distribution. All five contributions used the 95% highest density interval (HDI), which, for a

unimodal posterior distribution, describes the narrowest interval around the posterior mode that

includes 95% of the posterior probability mass.

As the marginal posterior distributions for the DDM are not available in closed-form,

numerical methods must be used to approximate the posterior mean or median and the 95%

HDI. Heathcote, Hawkins, and van Ravenzwaaij used the Differential-Evolution Markov Chain

Monte Carlo (MCMC) algorithm (ter Braak, 2006), and Frank et al. used the Slice-Sampling

MCMC algorithm (Neal, 2003). Despite some differences in the implementational details, both

algorithms are based on the construction of a number of Markov chains that have the target

posterior distribution as their equilibrium distribution. An approximation of the posterior density

is obtained by observing the Markov chains after they have converged to their equilibrium

distribution, which can then be used to compute relevant summary statistics. Annis and Palmeri

used the Laplace approximation of the joint posterior density of all DDM parameters for each

participant to estimate the posterior modes and covariance matrix. Based on these estimates, they

used numerical integration by Componentwise Adaptive Gauss-Hermite Iterative Quadrature to

compute the posterior mean and 95% HDI. For Level 3 they used the same numerical integration

method to approximate the posterior means for each participant. These estimates were then

combined in a Bayesian model to estimate the group-level mean and standard deviation for each

DDM parameter using Hamiltonian MCMC sampling.

3.2 Maximum-Likelihood Estimation

Two contributions used maximum-likelihood estimation. This method uses the DDM’s

likelihood function to numerically approximate the parameter values that maximize the joint
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likelihood of the observed data for each participant. Singmann and Kellen used an algorithm

based on Newton’s method (Kaufman & Gay, 2003) to find the ML estimators of the DDM

parameters; Voss and Lerche computed the ML estimators using a version of the Simplex

algorithm (Nelder & Mead, 1965).

Both groups used bootstrap confidence intervals (BCI) to quantify the uncertainty

associated with the ML estimators. Singmann and Kellen based their BCIs on 1000 bootstrap

samples, Voss and Lerche based their BCIs on 200 bootstrap samples and only reported intervals

for the across-trial variability parameters.

For Level 3, Voss and Lerche obtained ML estimates of the parameter values for each

individual participant and reported the average estimated value across participants. Singmann and

Kellen did not fit the Level 3 data.

3.3 χ2 Minimization

Two contributions used χ2 minimization. This method estimates the DDM parameters

that minimize the deviation between observed and predicted RT quantiles for correct and

incorrect responses. Specifically, for the .1, .3, .5, .7, and .9 quantiles, the method minimizes the

χ2 statistic:

χ
2 =∑

i

N(pi−πi)
2

πi
, (1)

where N is the total number of observations, pi and πi denote the observed and predicted

proportions of trials in bin i, respectively, and the summation is over 12 quantiles (6 for correct

responses and 6 for error responses).

Servant and Logan excluded errors from the χ2 computation when their number was

below 10, Starns excluded errors from the χ2 computation when their number was below 5. Both

contributions used the Simplex algorithm (Nelder & Mead, 1965) to find the parameter values

that minimize the χ2 statistic across experimental conditions. However, whereas Starns estimated

separate drift rates for each experimental condition and “left” and “right” stimuli, Servant and

Logan estimated a single drift rate for each experimental condition. Moreover, Servant and Logan
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imposed a number of constraints on z, sz, sv, and sTer to guarantee sensible parameter estimates.

For Levels 1 and 2, Servant and Logan quantified the uncertainty associated with their

parameter estimates using parametric BCIs. To this end, they generated 50 bootstrap data sets

from the model with the best-fitting parameter values and again fit the DDM to these bootstrap

data sets using χ2 minimization. To quantify the uncertainty associated with his parameter

estimates, Starns fixed each DDM parameter in turn to a value above or below the best-fitting

value and used χ2 minimization on the remaining parameters to find the parameter value at which

the likelihood of the data was 10 times lower than the likelihood under the best-fitting value.

For Level 3, both contributions used χ2 minimization to find the best fitting parameter

values for each individual participant and reported the average across participants. Starns

quantified the uncertainty for his parameter estimates using conventional 95% confidence

intervals whereas Servant and Logan did not report measures of uncertainty.

4 Results

Figure 4 presents a summary of the across-trial variability parameter estimates for Level

1 reported by our collaborators and the distribution of parameter values observed in empirical

studies reported in Matzke and Wagenmakers (2009) as a reference point. The vertical line

indicates the generating value for each parameter, dots indicate point estimates obtained by

different estimation methods and error bars show the corresponding measures of uncertainty

reported by our collaborators. Results shown in gray are based on fits of the full DDM where the

main DDM parameters were not fixed to the true values.

The results for sTer are shown in the left panel. As can be seen, all point estimates for sTer

were close to the generating value and the uncertainty intervals were very narrow compared to

the range of values typically found in empirical studies, indicating that sTer could be estimated

reliably by all estimation methods.

Similarly, most point estimates for sv, shown in the middle panel, were close to the

generating parameter value and uncertainty intervals were relatively narrow compared to

the range of values observed in empirical studies. The estimate for sv reported by Frank et
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Figure 4: Estimates for across-trial variability parameters for Level 1 obtained with different

estimation methods. Histograms at the bottom show the distribution of parameter values observed

in empirical studies reported in Matzke and Wagenmakers (2009). The vertical line in each

panel shows the generating parameter value. Dots indicate parameter estimates obtained by our

collaborators, error bars represent the measures of uncertainty reported by our collaborators (see

Table 2). Labels indicate the first author, abbreviations in brackets indicate the fitting methods

(B: Bayes, ML: maximum-likelihood estimation, χ2: χ2-minimization for RT quantiles). Results

shown in gray did not fix the main DDM parameters to their known values. 1This fit was obtained

on request of the organizers after the generating parameter values had been published. 2This fit

was obtained with an incorrectly scaled prior distribution on sv. 3This fit was obtained with a

corrected prior distribution on sv after the generating parameter values had been published; see

van Ravenzwaaij’s contribution in section A.3 for details.
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al., shown in gray, was associated with a relatively wide uncertainty interval. As explained

in their contribution, Frank et al.’s fitting method does not allow users to fix parameters to a

specific value, and thus could not take advantage of the known DDM parameter values for this

data set. Similarly, van Ravenzwaaij’s initial model fit did not fix the main DDM parameters

to their known values. The corresponding point estimate for sv, shown in gray, missed the

generating parameter value by a wide margin. As he explains in his contribution, this was due

to a misspecified prior distribution for sv, which strongly biased the parameter estimate.1 The

second estimate, which fixed the main DDM parameters to their known values and used an

appropriate prior distribution, shown in black, was comparable to the estimates obtained with

other methods.

Finally, most point estimates of sz for the Level 1 data, shown in the right panel, missed

the generating parameter value. Compared to the range of parameter values observed in empirical

studies, the uncertainty intervals associated with these point estimates were relatively narrow.

This bias in the estimates of sz suggests that the parameter might not be sufficiently constrained

by the data, even if the value of the z parameter is known exactly. Similar to the results for

sv, Frank et al.’s estimate for sz was associated with a relatively wide uncertainty interval as

their estimation method could not take advantage of the known DDM parameter values. Van

Ravenzwaaij’s initial point estimate for sz, shown in gray, also missed the generating parameter

value by a wide margin. The second estimate, shown in black, which used an appropriate prior

distribution and fixed the known DDM parameters, was comparable to the estimates obtained

with other methods.

The results for Level 2 show complementary patterns to the observations above.

Figure 5 shows the point estimates and uncertainty intervals for the Level 2 data compared

to the distribution of parameter values typically observed in empirical studies. Similar to the

results for Level 1, all estimates for sTer , shown in the left panel, were close to the generating

1Note that van Ravenzwaaij’s misspecified prior distribution for sv also biased the posterior variance for sv and

sz, resulting in relatively narrow uncertainty intervals.
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parameter value and uncertainty intervals were narrow across methods, which again indicates

that all estimation methods could reliably recover the value of sTer . Moreover, the width of the

uncertainty intervals for Level 2 was similar to that for Level 1 for all estimation methods, which

further suggests that sTer is sufficiently constrained by the data and is not strongly dependent on

the values of the main DDM parameters.

Point estimates of sv for Level 2, shown in the middle panel, showed relatively small

deviations from the generating parameter value compared to the range of values observed in

empirical studies. However, across estimation methods there was considerable uncertainty

associated with these point estimates, with uncertainty intervals spanning nearly half the range

of empirical values. Moreover, compared to Level 1, point estimates for Level 2 showed higher

variability around the generating value and the uncertainty associated with these estimates

approximately doubled. Interestingly, uncertainty intervals were similar in width across

estimation methods and the increase in uncertainty from Level 1 to Level 2 was also comparable

across estimation methods. Taken together, these results suggest that sv is dependent on the

values of the main DDM parameters. Indeed, Singmann and Kellen found strong correlations

between a, v, z and sv, and Hawkins found a strong correlation between v and sv. The initial

estimate for sv reported by van Ravenzwaaij again missed the generating parameter value by

a wide margin. However, a second estimate that used an appropriate prior distribution was

comparable to the estimates obtained with other methods.

Finally, point estimates of sz for Level 2, shown in the right panel of Figure 5, deviated

considerably from the generating parameter value compared to the range of values observed in

empirical studies and uncertainty intervals spanned half the range of empirical values. Moreover,

compared to Level 1, point estimates showed increased variability and uncertainty intervals

doubled in width for most methods. Similar to sv, the increase in uncertainty for estimates of sz

from Level 1 to Level 2 was comparable for all estimation methods. However, point estimates

obtained from hierarchical Bayesian methods tended to lie closer to the generating parameter

value than estimates obtained with other methods, which largely yielded estimates close to
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Figure 5: Estimates for across-trial variability parameters for Level 2 obtained with different

estimation methods. Histograms at the bottom show the distribution of parameter values observed

in empirical studies reported in Matzke and Wagenmakers (2009). The vertical line in each

panel shows the generating parameter value. Dots indicate parameter estimates obtained by our

collaborators, error bars represent the measures of uncertainty reported by our collaborators (see

Table 2). Labels indicate the first author, abbreviations in brackets indicate the fitting methods

(B: Bayes, ML: maximum-likelihood estimation, χ2: χ2-minimization for RT quantiles). 1This

fit was obtained using accuracy-coding. 2This fit was obtained using stimulus-coding after the

generating parameter values had been published; see Frank et al’s contribution in section A.4 for

details. 3This fit was obtained with an incorrectly scaled prior distribution on sv. 4This fit was

obtained with a corrected prior distribution on sv after the generating parameter values had been

published; see van Ravenzwaaij’s contribution in section A.3 for details.
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0. This relatively better performance of hierarchical Bayesian methods is likely due to the

specification of the prior distribution for sz, which is mostly based on the empirical distribution

of parameter values reported by Matzke and Wagenmakers (2009). Consequently, even if sz

cannot be estimated accurately from the data, the prior distribution will pull point estimates

into a region with higher prior probability. These results suggest that sz, similar to sv, is not

sufficiently constrained by the data and is dependent on the values of the main DDM parameters.

This conclusions is again supported by the strong correlations between sz and Ter reported by

Hawkins, and Singmann and Kellen.

In contrast to the across-trial variability parameters, the main DDM parameters could

be estimated with high precision across estimation methods. The top row in Figure 6 shows

the point estimates and uncertainty intervals for the Level 2 data compared to the distribution

of parameter values typically observed in empirical studies. As can be seen, point estimates

were close to the generating parameter values and uncertainty intervals were narrow for a,

Ter, and z. Only Starns’s, and Voss and Lerche’s estimates for Ter and Franks et al.’s second

estimate for z missed the generating value. The latter result is due to reporting 1− z instead

of z and correcting Franks et al.’s estimate for this misreporting yields a value much closer to

the generating parameter value. Similarly, point estimates for the drift rates v were close to the

generating parameter values across estimation methods; only van Ravenzwaaij’s initial estimate

missed the generating value. Although uncertainty intervals for v were wider than for the other

main DDM parameters, the intervals are relatively narrow compared to the range of parameter

values observed in empirical studies. These results suggest that the main DDM parameters can be

estimated with relatively high precision at the level of individual participants.

The relationship between the main DDM parameters and the across-trial variability

parameters is shown in Figure 7. Gray lines indicate the generating parameter values and black

dots show the parameter estimates obtained by our collaborators. The size of each dot indicates

how the correlation between the corresponding main DDM parameter and the across-trial

variability parameter would change if the data point was removed from the computation of the
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correlation, with larger dots being associated with larger changes in the estimated correlation.

It is important to note that DDM parameters are generally not independent; Ratcliff and

Tuerlinckx (2002), for instance, found correlations between most DDM parameters for individual

participants to be at least 0.5. We, therefore, only consider correlations greater than 0.5 to be

noteworthy. As can be seen in Figure 7, for sTer (top row) data points for all parameters except

a are similar in size, which means that the estimated correlations between sTer and the main DDM

parameters are not driven by outliers. For a, removal of the outlier in the bottom right corner of

the panel resulted in a correlation of r = 0.57, which suggests that estimation of a was strongly

dependent on sTer . The correlations for the remaining main parameters were small to medium in

size, which suggests that the estimation of these parameters was not critically dependent on sTer

across estimation methods.

Similarly, for sv (middle row) data points in the panels for a, Ter, and v are similar in

size, which suggests that the estimated correlations are not driven by outliers. There are sizable

positive correlations between sv and a, and between sv and all three drift rates v. This means

that estimates of a and v were critically dependent on sv. The correlation between sv and z was

strongly influenced by a single data point, removal of which increased the correlation to r = 0.67.

This suggests that estimation z was also critically dependent on sv.

Finally, for sz (bottom row) data points in the panels for Ter and z are similar in size,

which suggests that the estimated correlations are not driven by outliers. The medium-sized

negative correlations with Ter and z indicate that estimates for these parameters were not critically

dependent on sz. The correlations of sz with a and v were influenced by a single outlier. However,

removal of this outlier did not yield sizable correlations, which suggests that estimates for a and v

were not critically influenced by sz.
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Figure 6: Estimates for the main DDM parameters for Levels 2 and 3 obtained with different

estimation methods. Histograms at the bottom show the distribution of parameter values observed

in empirical studies reported in Matzke and Wagenmakers (2009). The vertical line in each

panel shows the generating parameter value. Dots indicate parameter estimates obtained by our

collaborators, error bars represent the measures of uncertainty reported by our collaborators

(see Table 2). Uncertainty intervals for Levels 2 and 3 were not available for some contributions

that used χ2-minimization and maximum-likelihood estimation. Labels indicate the first author,

abbreviations in brackets indicate the fitting methods (B: Bayes, HB: hierarchical Bayes,

NHB: non-hierarchical Bayes, ML: maximum-likelihood estimation, χ2: χ2-minimization

for RT quantiles). 1This fit was obtained using accuracy-coding. 2This fit was obtained using

stimulus-coding after the generating parameter values had been published. The large deviation

from the generating value is due to misreporting 1− z instead of z; see Frank et al’s contribution

in section A.4 for details. 3This fit was obtained with an incorrectly scaled prior distribution on

sv. 4This fit was obtained with a corrected prior distribution on sv after the generating parameter

values had been published; see van Ravenzwaaij’s contribution in section A.3 for details.

Figure 8 shows the point estimates and measures of uncertainty for the across-trial

variability parameters for the Level 3 data reported by our collaborators. The results are similar

to those for the participant-level estimates for the Level 2 data. As can be seen, estimates for

µsTer
showed near perfect agreement with the generating parameter value. Moreover, compared

to the range of empirical values for sTer , uncertainty intervals for the Level 3 data were negligible

across estimation methods, which indicates that the parameter µsTer
could be estimated with high

precision. Point estimates for µsv showed somewhat higher variability around the generating

parameter value. However, this variability was small compared to the range of sv values observed

in empirical studies and uncertainty intervals for the point estimates of µsv were relatively narrow.

Finally, point estimates for µsz deviated considerably from the generating parameter value

compared to the range of values in empirical studies and uncertainty intervals were relatively
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Figure 7: Correlations between the main DDM parameters and the across-trial variability

parameters across estimation methods. Thin gray lines in each panel show the generating

parameter values. Dots indicate parameter estimates obtained by our collaborators. Dot

size represents the change in the estimated correlation if the data point is removed from the

computation of the correlation; larger dots correspond to a larger change in correlation, ∆r =

|rall data− rleaveout i|. Results from van Ravenzwaaij’s initial fit are not included as parameter

estimates were considerably biased.
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wide for most estimation methods. Similar to the uncertainty intervals for the participant-level

estimates for Level 2, uncertainty intervals for µsz for Level 3 were relatively wide, which

suggests that sz is insufficiently constrained by the data.

The results for the estimation of the group-level main DDM parameters parallel those

for the individual-level parameters. The bottom row in Figure 6 shows the point estimates

and uncertainty intervals for the Level 3 data compared to the distribution of parameter values

typically observed in empirical studies. As can be seen, point estimates were close to the

generating parameter values and uncertainty intervals were narrow for a. Similarly, most

contributors’ point estimates for Ter, v, and z were also close to the generating parameter value

and the associated uncertainty intervals were narrow compared to the range of empirical values.

As for Level 2, Starns’, and Voss and Lerche’s estimates for Ter were larger than the generating

group-level parameter, and Frank et al.’s estimates for z were smaller than the generating

group-level parameter. These deviations might, therefore, reflect biases in the estimation of

the individual-level parameters. Finally, Servant and Logan’s, Starns’, and Voss and Lerche’s

estimates for v overestimated the drift rates in the easy and medium conditions. However, it

is hard to assess whether these deviations reflect systematic biases in the estimation methods

because there are no uncertainty intervals available for these group-level estimates and there were

no comparable deviations visible for the Level 2 data. Taken together, these results show that the

group-level main DDM parameters can be estimated with acceptable precision, although some

methods might provide biased point estimates for Ter, z, and v.

The relationship between group-level estimates of the main DDM parameters and

group-level estimates of the across-trial variability parameters is shown in Figure 9. Gray lines

indicate the generating parameter values and black dots show the parameter estimates obtained by

our collaborators. The size of each dot indicates how the correlation between the corresponding

main DDM parameter and the across-trial variability parameter would change if the data point

was removed from the computation of the correlation, with larger dots being associated with

larger changes in the estimated correlation.
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Figure 8: Estimates for the across-trial variability parameters for Level 3 obtained with different

estimation methods. Histograms at the bottom show the distribution of parameter values observed

in empirical studies reported in Matzke and Wagenmakers (2009). The vertical line in each

panel shows the generating parameter value. Dots indicate parameter estimates obtained by our

collaborators, error bars represent the measures of uncertainty reported by our collaborators (see

Table 2). Labels indicate the first author, abbreviations in brackets indicate the fitting methods

(HB: hierarchical Bayes, NHB: non-hierarchical Bayes, ML: maximum-likelihood estimation,

χ2: χ2-minimization for RT quantiles). 1This fit was obtained using accuracy-coding. 2This fit

was obtained using stimulus-coding after the generating parameter values had been published;

see Frank et al’s contribution in section A.4 for details.
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As can be seen, for sTer (top row) data points in each panel are similar in size, which

suggests that the estimated correlations between sTer and the main DDM parameters are not

driven by outliers. Similar to Level 2 after outliers were removed, the correlations for a and z

are medium-sized or small, which suggests that estimates of these group-level parameters were

not critically dependent on sTer across estimation methods. However, in contrast to Level 2, there

are sizable negative correlations between sTer and Ter, and between sTer and vEasy and vMedium for

Level 3. This suggests that estimation of these group-level parameters was critically influenced

by sTer .

For sv (middle row) data points in the panels for a, and v are similar in size, which

suggests that the estimated correlations are not driven by outliers. In contrast to Level 2, the

correlation between the estimates for sv and a is only medium-sized, which suggests that

estimation of the group-level parameter a was not critically dependent on the estimation of

sv. The estimated correlation between sv and Ter was strongly influenced by two data points.

Removal of these data points increased the correlation to r = 0.61, which suggests that sv

critically influenced the estimation of the group-level parameter Ter. Similar to Level 2, there are

sizable positive correlations between sv and all three drift rates v. This means that, also on the

group-level, estimates of v were critically dependent on sv. Moreover, as for Level 2, there is only

a weak correlation between sv and the group-level parameter z, which suggests that estimates of z

were not critically dependent on sv.

Finally, for sz (bottom row) data points in all panels are similar in size, which suggests

that the estimated correlations are not driven by outliers. Despite some differences in size, similar

to Level 2, correlations between sz and a, sz and Ter, and between sz and z were not substantial.

This means that estimation performance for these group-level parameters was not critically

dependent on the estimation of sz. In contrast to Level 2, the sizable positive correlations between

sz and vEasy and vMedium suggest that estimation of these group-level drift rates was critically

influenced by sz.

Taken together, the results for Level 3 confirm the strong correlations between sv and
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estimates of v observed for Level 2, but suggest additional strong correlations between v and

sTer , between v and sz, and between Ter and sTer . Moreover, the results for Level 3 did not show

the strong correlation between a and sv observed for Level 2. These results might be taken to

suggest different dependencies between estimates of DDM group-level parameters than between

estimates of participant-level parameters. However, these discrepancies might equally well be a

product of chance variation due to the small number of contributions on which the correlations

are based.
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Figure 9: Correlations between group-level means of main DDM parameters and across-trial

variability parameters across estimation methods. Thin gray lines in each panel show the

generating parameter values. Dots indicate parameter estimates obtained by our collaborators.

Dot size represents the change in the estimated correlation if the data point is removed from

the computation of the correlation; larger dots correspond to a larger change in correlation,

∆r = |rall data− rleaveout i|.
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5 Advice

5.1 Bayesian Estimation

Our collaborators discussed two main problems often encountered with Bayesian methods

that rely on MCMC sampling. First, effective approximation of the posterior density requires

that MCMC chains have converged to their equilibrium distribution. That is, MCMC samples

should reflect genuine samples from the posterior distribution. However, chains might get stuck

at a particular value for longer periods of time without having converged, or exhibit a very slow

drift towards the equilibrium distribution. In both cases automatic convergence checks might

falsely indicate that the chains have converged. Users should, therefore, always visually check

that chains have converged and are fluctuating around a common value.

If a sufficient number of chains have been sampled, post-hoc removal of non-converged

chains might help address convergence problems without affecting parameter estimates. For

the DE-MCMC algorithm, one way to address convergence problems is to use a migration step

during burn-in in which samples are exchanged between chains. This allows chains that are far

from the other chains to be pulled towards a common value.

Second, the across-trial variability parameters are associated with a relatively flat

likelihood function, and hence are not well constrained by the data. In a hierarchical setting in

particular, this can result in poor prior updating, where MCMC chains remain stuck in the prior

distribution. Such problems can be detected by superimposing the prior distribution and the

posterior distributions in a single figure to verify that the estimates reflect the posterior more than

the prior. Moreover, repeated sampling with different sensible prior settings should yield similar

results for the posterior samples if prior updating occurred.

Users of numerical integration methods might benefit from using estimates of the

posterior mode and covariance matrix obtained from a Laplace approximation to initialize the

quadrature procedure. The Simplex algorithm provides a fast and efficient way to compute

Laplace approximations. One limitation of quadrature methods is that their use is limited to

models with 10 or fewer parameters, which typically precludes applications to hierarchical
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models.

In general, users of Bayesian estimation methods should be aware that these methods

are sensitive to serious misspecifications of prior distributions. Users should therefore

check that prior specifications are sensible and priors might need to be rescaled for different

parameterizations of the DDM (e.g., if the diffusion coefficient s is changed from 0.1 to 1).

Lastly, users should be aware that estimating posterior means and HDIs in hierarchical models

using MCMC sampling is computationally expensive.

5.2 Maximum-Likelihood Estimation

Parameter estimation using ML methods requires efficient numerical optimization. Within

the setup used by Singmann and Kellen, use of the nlminb algorithm (Kaufman & Gay, 2003)

is recommend as it converges quickly on global optima. In the setup used by Voss and Lerche,

the Simplex algorithm seems to provide a good compromise between speed of convergence and

convergence to global, rather than local, optima.

One drawback of ML estimation methods is their sensitivity to contaminant RTs, which

can considerably bias parameter estimates. Whereas in the present study all RTs were known to

have been generated by the DDM, in applications to real data more robust estimation methods

should be used, such as estimation based on the Kolmogorov-Smirnov statistic.

5.3 χ2 Minimization

Parameter estimation using χ2 minimization, similar to ML estimation, requires efficient

numerical optimization, in this case of the χ2 statistic. The optimization method used by our

collaborators relies on an iterative procedure using the Simplex algorithm. The χ2 statistic

is minimized for a set of starting values, and the resulting parameter estimates are used as

starting values for a new iteration of optimization process. This iterative scheme is repeated

until the parameter estimates do not change substantially between iterations. Servant and Logan

observed that the resulting parameter estimates are dependent on the starting values used in the

first iteration, in particular for the parameters v, sv, and sz. These instabilities in the parameter
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estimates might be due to trade-offs between v and sv, and a flat likelihood function for sz, which

might be addressed by either fixing or combining parameters that are not well recovered (White,

Servant, & Logan, 2017).

Ratcliff and Childers (2015) recently suggested a further refinement of the χ2 method,

where the median RT of errors is used in the computation of the χ2 statistic, rather than ignoring

errors completely if their number is below 10. This refined method might improve parameter

estimation for Level 3 where the number of error RTs was small for some data sets.

5.4 General Recommendations

Several of our collaborators reported high correlations and trade-offs between DDM

parameters. In particular, sv, sz, and v seem to be highly correlated, which complicates their

joint estimation. A first way to deal with this problem is to forgo estimation of the across-trial

variability parameters altogether and fix their value to 0, based on the motivation that the

across-trial variability parameters were introduced into the DDM to account only for fine-grained

details of the RT distribution (van Ravenzwaaij, Donkin, & Vandekerckhove, 2017; Ratcliff &

Tuerlinckx, 2002, e.g.,). In many practical applications, however, the focus is on the main DDM

parameters. In these cases, the across-trial variability parameters increase model complexity

without tangible benefits for the estimation of the main DDM parameters; the main DDM

parameters can often be estimated precisely even if the data were generated by a DDM with

non-zero across-trial variabilities (Lerche & Voss, 2016).

Second, if users decide to estimate the across-trial variability parameters, several steps

should be taken to improve the quality and interpretability of parameter estimates. Obtaining a

sufficient number of trials is a prerequisite for estimating the across-trial variability parameters.

However, simply increasing the length of an experimental session means that participants might

lose motivation and focus, which might, in turn, introduce contaminant RTs and thus affect the

precision of parameter estimates.

As a general rule, researchers are expected to quantify the error associated with the

parameter estimates, for example by obtaining bootstrap confidence intervals. However, in
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applications to real data, such confidence intervals are influenced not only by the estimation error

but also by potential model misspecification, that is, if data were generated by a different model

than the DDM. Therefore, additional methods such as parametric bootstrap should be employed

to more appropriately assess estimation error and detect model misspecification.

Finally, due to the high uncertainty associated with the across-trial parameters,

comparisons of parameter estimates across participants are notoriously unreliable. In

between-subjects designs, all parameters need to be estimated for each participant in each

condition, which means that in comparisons across conditions, uncertainty in one parameter

can compound uncertainty in another. In within-subjects designs, on the other hand, only

the parameters of interest need to be estimated in each condition, all other parameters are

assumed to have the same value across conditions. This might allow for meaningful comparisons

of across-trial variability parameters in some instances. In memory research, for example,

simulations studies indicate that differences in drift rate variability between experimental

conditions can be recovered with some reliability (Starns & Ratcliff, 2014) and validation studies

were able to detect manipulations of evidence variability in empirical data (Starns, 2014).

6 Discussion

Over the last 40 years, the DDM has become one of the most popular models for

explaining RT and accuracy data from a wide range of domains (Forstmann et al., 2016; Ratcliff

et al., 2016; Ratcliff & McKoon, 2008). Much of this success is due to the model’s ability to fit

varied shapes of RT distributions; through the addition of three across-trial variability parameters,

the DDM can account for subtle RT patterns that elude most competitor models (Ratcliff, 1978;

Ratcliff & Tuerlinckx, 2002; Van Zandt & Ratcliff, 1995). However, several recent studies have

reported difficulties estimating these across-trial variability parameters, even in sizable data sets

(Lerche & Voss, 2017; Lerche & Voss, 2016; Yap et al., 2012; van Ravenzwaaij & Oberauer,

2009). For example, van Ravenzwaaij and Oberauer (2009) generated data from the full DDM

and considered two criteria for fitting the full DDM, one based on a Kolmogorov-Smirnov

statistic and one based on a maximum-likelihood type of criterion. They found that both
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fitting methods could accurately recover the main DDM parameters as well as the across-trial

variability in non-decision time, whereas estimates of the across-trial variability in drift rate and

starting point missed the generating parameter values by a wide margin. Ratcliff and Tuerlinckx

(2002) found similar results across a wide range of generating parameter values for the main

DDM parameters, using a maximum-likelihood and a χ2-criterion, among others. Moreover,

Ratcliff and Tuerlinckx reported sizable correlations between the main DDM parameters and

the across-trial variability parameters, which suggests that poor estimation of the across-trial

variability parameters might negatively affect estimation of the main DDM parameters.

These findings raise the question whether and how different fitting methods can be

optimally used to obtain the best possible estimates of the across-trial parameters. Since

van Ravenzwaaij and Oberauer (2009) and Ratcliff and Tuerlinckx’s (2002) studies, several

new fitting methods and software packages have become available. Using these packages

often requires decisions about optimization or sampling algorithms, or adjustments to the

implementation, based on expert knowledge of the method. However, many users do not have

the required expertise nor the resources to conduct extensive simulation studies to find the best

possible approach to fitting their data. Therefore, the current study invited experts from the

DDM community to apply their fitting methods to a standard experimental setup and provide

recommendations for estimating the DDM’s across-trial variability parameters.

The experts contributing to our study used a wide range of fitting methods for the DDM

and reported similar difficulties as Lerche and Voss (2017), Lerche and Voss (2016), Yap et al.

(2012), and van Ravenzwaaij and Oberauer (2009) when estimating the across-trial variability

parameters. Besides practical limitations, such as some methods being unable to fit specific data

structures (e.g., the hierarchical structure, or the single-participant structure with some DDM

parameters known), the estimation performance of the different methods depended strongly

on the specific DDM parameter. Most estimation methods used by our collaborators could

accurately recover the main DDM parameters as well as across-trial variability in non-decision

time. Estimates of the across-trial variability in drift rate and starting point, on the other hand,
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were associated with large uncertainty and tended to miss the generating value by a wide

margin. These results are largely in line with those of Ratcliff and Tuerlinckx (2002), who

could accurately recover the main DDM parameters on the individual-level but reported large

uncertainty for estimates of across-trial variability in drift rate and starting point. Interestingly,

uncertainty intervals in our study were similar in width across estimation methods and the

increase in uncertainty from a situation where the main DDM parameters were known to a

situation where all DDM parameters had to be estimated was comparable for all estimation

methods. This indicates that estimation performance was not limited by the estimation methods

themselves but rather by the degree to which specific DDM parameters are constrained by the

data.

Our results further suggest tradeoffs in the estimation of the main DDM parameters

and the across-trial variability parameters. Specifically, we found strong correlations between

collaborators’ estimates for drift rate variability and drift rate as well as between drift rate

variability and boundary separation on the individual-level. Moreover, group-level estimates of

all three across-trial variability parameters were strongly correlated with estimates of drift rate,

and group-level estimates of variability in non-decision time and drift rate were also correlated

with estimates of non-decision time. Although these correlations should be interpreted carefully

due to the small number of data points on which the correlations are based, our results generally

align with those of Ratcliff and Tuerlinckx (2002). Ratcliff and Tuerlinckx reported strong

correlations on the individual-level between drift-rate variability and boundary separation and

drift rate, as well as between variability in starting point and boundary separation, non-decision

time, and drift rate. Our results suggest that bias in estimates of across-trial variability in drift rate

affects estimation performance for the main parameters on all hierarchical levels, and that biased

estimates of variability in non-decision time and starting point additionally affect group-level

estimates of the main DDM parameters.
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6.1 Limitations

There are three aspects of our study that might limit the generalizability of our results.

The first aspect concerns the setup of our Level 3 data set, where the across-trial variability

parameters were the same for all participants. Hierarchical Bayesian methods often assume

that all individual-level parameters are sampled from a non-degenerate group-level distribution

with positive variance, and therefore rely on a hyperprior that does not support zero variance

(e.g. Chung, Rabe-Hesketh, Dorie, Gelman, & Liu, 2013; Gelman, 2006). However, because

we assigned the same value to the across-trial variability parameters for all participants, the

true variance of the group-level distribution was zero. This can cause estimation problems

in hierarchical Bayesian methods such as DMC (Heathcote et al., in press) and, at the same

time, gives an unfair advantage to implementations such as HDDM (Wiecki et al., 2013), which

assumes common across-trial variability parameters across participants. Nevertheless, the

results obtained with DMC and HDDM for the Level 3 were similar; uncertainty intervals for

non-decision time and drift rate variability were comparable in width and point estimates were

close to the generating value for both implementations. Only uncertainty intervals for starting

point variability were wider for DMC than for HDDM and one HDDM point estimate missed the

generating value by a sizable margin. Thus, although DMC might perform better with a different

setup where across-trial variability parameters differ between participants, the present results

suggest that DMC is relatively robust to such model misspecification.

In addition to these technical considerations, our design choice for the Level 3 data

set highlights a more general problem in the specification of cognitive models. Several of our

contributors were reluctant to accept certain parameter values as plausible. Heathcote and

Hawkins, for example, point out that a group-level variance of 0 for the across-trial variability

parameters is implausible. This assumption is embodied in their specification of the prior

distribution for the group-level variances, which contains 0 as a boundary value. On the other

hand, some modeling practices fix model parameters to a specific value. HDDM, for example,

assumes a group-level variance of 0. These two modeling approaches, either estimating a
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distribution or fixing a parameter to a particular value, essentially represent different a priori

choices with regards to model complexity. Although it might be argued that DDM parameters

will never be exactly the same across participants, the variance might be so small to be 0 for all

intents and purposes. Hence, fixing parameter values might be an appropriate modeling choice in

some instances. The question when the simpler model should be preferred is a complicated one

and has been discussed extensively in the literature on model selection. We will not pursue this

discussion here and refer the interested reader to the relevant literature (e.g., Aho, Derryberry,

& Peterson, 2014; Burnham & Anderson, 2002; Jeffreys, 1961; McQuarrie & Tsai, 1998).

However, we would like to point out that in applications of hierarchical implementations of the

DDM, researchers might need to consider the level of model complexity that is needed to answer

their research question. When the focus is on the application of a particular hierarchical model,

model complexity is a negligible factor. In contrast, when the goal is statistical inference about or

prediction based on model parameters, model complexity plays a pivotal role.

The second limiting aspect concerns our choice of generating parameter values. This

issue is best highlighted by a comparison of our results with the results of Ratcliff and Childers’s

(2015) parameter recovery study. Ratcliff and Childers compared parameter recovery using,

among others, χ2-minimization, Fast-dm, and HDDM for 48 different combinations of

generating parameter values and different numbers of conditions and trials per condition. Similar

to our results, all methods in Ratcliff and Childers’s study could accurately recover non-decision

time. However, whereas all methods in our study could accurately recover boundary separation,

in Ratcliff and Childers’s study Fast-dm and HDDM produced biased estimates for some

combinations of generating parameter values. Similarly, whereas all methods in our study could

accurately recover drift rate, Ratcliff and Childers reported considerable biases in the estimation

of drift rate for some generating parameters for HDDM and a general tendency to underestimate

drift rate for Fast-dm. Biases in the estimation of boundary separation and drift rate in Ratcliff

and Childers’s study were more pronounced for larger generating values.

The interpretation of the discrepancies between Ratcliff and Childers’s (2015) and our
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results is somewhat hampered by the fact that Ratcliff and Childers did not report results for the

across-trial variability parameters. One notable difference between our two studies is the range of

generating values. In particular, Ratcliff and Childers used generating values of sz = 0.2, sz = 0.6,

and sz = 0.8 whereas we used values of sz = 0.2 and sz = 0.3 for the Level 2 and Level 3 data

sets. Moreover, Ratcliff and Childers used generating values of a = 1 or a = 2, whereas we used

a relatively small value of a = 0.8 for Level 2 and a small mean µa = 0.8 and standard deviation

σa = 0.3 for Level 3. At the same time, all other generating parameters in our study fell into the

middle range of values reported in the literature.

Hence, the worse recovery performance of some methods for the main DDM parameters

in Ratcliff and Childers’s study might have been due to trade-offs with the across-trial variability

parameters and the large variability in the data resulting from relatively extreme generating

values for the main DDM parameters. This suggests that the generally good performance of all

methods in our study might not generalize to other settings. In particular, drift rate and to a lesser

degree also boundary separation might be estimated with lower precision or estimates might be

systematically biased under alternative generating parameter values.

However, we do believe that the good recovery performance for non-decision time

variability in our study will likely generalize to other settings despite the low generating values

of sTer = 0.1 for Level 1 and Level 2. As across-trial variability in non-decision time determines

how well-defined the leading edge of the RT distributions is, it might be argued that the small

generating value caused minimal smearing of the leading edge, and might hence be responsible

for the good recovery results for this parameter. However, despite the larger generating value for

the Level 3 data, recovery was also very accurate in this case. Moreover, Ratcliff and Tuerlinckx

(2002) could recover a generating value of sTer = 0.2 with remarkable accuracy even in the

presence of contaminant RTs when using appropriate outlier corrections.

The third limiting aspect concerns the lack of outlier RTs in our simulated data. The

results in Ratcliff and Childers (2015) suggest that some of the methods in the present study

might show worse recovery performance if outlier RTs are present.
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6.2 How and when to estimate across-trial variability parameters

The results of our simulations, in line with previous studies (Lerche & Voss, 2017; Lerche

& Voss, 2016; Yap et al., 2012; van Ravenzwaaij & Oberauer, 2009; Ratcliff & Tuerlinckx,

2002; Ratcliff & Childers, 2015), show that the DDM’s across-trial variability parameters are

notoriously difficult to estimate. At the same time, the high correlations between the main DDM

parameters and the across-trial variability parameters (Ratcliff & Tuerlinckx, 2002) imply that

misestimation of the latter might bias estimates of the main DDM parameters. This raises the

question how such biases can be minimized. A possible solution to the problem of estimating

across-trial variability parameters is to place constraints on the admissible range of parameter

values. As seen in our study, at least for variability in starting point, hierarchical Bayesian

methods tended to yield point estimates that were close to the generating parameter value.

This is due to the prior distribution these methods place on the DDM parameters, which pulls

parameter estimates towards a priori plausible values if the data provide insufficient information

to estimate the parameters. Other fitting methods might similarly benefit from constraining

parameters to lie within the range of values observed in previous studies, as was done in the

contribution by Servant and Logan. However, as discussed in van Ravenzwaaij’s contribution,

such constraints need to be carefully adjusted to the specific implementation of the DDM as

incorrect prior information can severely bias parameter estimates. A good starting point for

constructing constraints on DDM parameters are large-scale surveys of published DDM fits, as

provided by Matzke and Wagenmakers (2009).

A further factor that might improve estimation of the across-trial variability parameters is

experimental design. The present study aimed to showcase the application of different estimation

methods to a standard experimental design as it is often used in functional neuroimaging and

clinical psychology. This was motivated mainly by the practical constraints that derive from, for

example, neurophysiological recordings. However, in cases where there are weak constraints on

the number of conditions, designs that use multiple appropriately spaced difficulty conditions

might allow for more precise estimation of the across-trial variability in drift and starting point.
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As pointed out in the introduction, the effect of variability in drift rate and starting point is to

change the relative speed of correct and error responses. In a quantile probability function these

effects are most clearly visible as a change in the left-right symmetry of the highest quantiles

(typically the .9 quantile; Ratcliff & McKoon, 2008). Consequently, accurate estimation of

these shifts in symmetry requires sufficient information about the tails of the correct and error

RT distributions at different accuracy levels that should span a wide range of accuracies. This

has two practical implications. First, researchers should include several difficulty conditions

(five or six) that are spaced in a way that accuracies span a large part of the range from 0.5 to

1.0. Second, researchers should collect sufficient numbers of trials, especially in low difficulty

conditions, to obtain reliable estimates of the highest quantiles of the error RT distribution. It

should be noted that, as a consequence of these two recommendations, researchers need to collect

sufficient numbers of trials for each difficulty condition. This might not be practically feasible in

research areas with strong limitations on the total number of trials, such as clinical psychology or

functional neuroimaging.

Another possible approach for improving estimation of the across-trial variability

parameters might be to use quantile-averaged data instead of fitting the DDM to individual

participants’ data. Cohen, Sanborn, and Shiffrin (2008) considered how model recovery is

affected if models are selected based either on individual participants’ data, or based on averaged

data. Their results showed that model recovery based on averaged data could outperform model

recovery based on individual participants’ data if the number of trials per participant was low.

It might therefore be suggested that estimation of the DDM’s across-trial variability parameters

might also benefit from using averaged data instead of individual data. However, this approach

only yields a single group-level estimate for each DDM parameter and provides no information

about the variance of the parameter values across participants. This precludes statistical

comparisons of parameter estimates between experimental conditions and the computation

of correlations with external variables across participants, both of which are often of central

interest in experimental studies. A more suitable, hybrid approach might be to use averaged
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data to estimate the across-trial variability parameters and subsequently estimate the main DDM

parameters for each participant with the across-trial variability parameters fixed to the values

obtained from the averaged data. However, Ratcliff and Childers (2015) found that using such a

hybrid approach conveyed no improvement in parameter recovery over estimating the across-trial

variability parameters at the participant-level.

An interesting difference between the present study and previous studies that tested

recovery of across-trial variability parameters is that while we found that all fitting methods

could accurately estimate the variability in non-decision time, earlier studies found estimates of

non-decision time variability to be unreliable. For example, Lerche and Voss (2017) reported

that estimates of variability in non-decision time correlated only weakly between sessions of a

lexical decision task, and Yap et al. (2012) found only modest correlations between estimates of

variability in non-decision time from the same session of a lexical decision task. This discrepancy

in results is most likely due to the use of simulated data from the DDM in the present study

whereas Lerche and Voss (2017), and Yap et al. (2012) used experimental data. In experimental

data, the true value of the variability in non-decision time might vary over time, which results

in a decreased retest reliability (Lerche & Voss, 2017). Moreover, experimental data might

contain outlier RTs. Fast outliers in particular affect the location of the leading edge of the RT

distribution, which in turn depends on the variability in non-decision time (Ratcliff & Tuerlinckx,

2002), thus leading to biased estimates of non-decision time variability. Although the problem

of fast outliers can be addressed to some degree by excluding RTs below a certain cutoff value

or by explicitly modeling outliers as being generated by a different process than the DDM,

separating genuine responses from outliers is inherently difficult (Ratcliff & Tuerlinckx, 2002).

Consequently, estimates of non-decision time variability from experimental data generally need

to be interpreted with care. At the same time, this susceptibility to outliers makes non-decision

time variability an important DDM parameter. As pointed out by Lerche and Voss (2016),

variability in non-decision time can potentially absorb the effects of fast outliers that would

otherwise bias estimates of the main DDM parameters. The results of our present study suggest
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that variability in non-decision time is only modestly correlated with boundary separation and

is not critical to the estimation of the remaining main DDM parameters at the participant-level.

Moreover, non-decision time variability is often not of substantial interest to researchers. A

pragmatic approach might, therefore, be to view non-decision time variability as a nuisance

parameter and forego interpretation of this parameter.

In general, the question when to estimate across-trial variabilities is more difficult to

answer. This is also reflected in the diverse recommendations our collaborators provide. Van

Ravenzwaaij recommends categorically against estimating across-trial variability parameters.

Heathcote suggests that drift rate and non-decision time variability can usually be estimated with

reasonable precision while starting point variability should only be estimated if there are clear

indications of fast errors. Voss & Lerche prefer simple models that only estimate non-decision

time variability and fix the remaining across-trial variabilities to 0. Similarly, Starns recommends

always estimating variability in non-decision time and suggests that variability in drift rate and

starting point might be fixed to standard values in most applications.

At the core of these diverse recommendations sits the question which DDM parameters

can be neglected without negatively affecting the estimation of other parameters. This question

has been discussed extensively in the literature. Wagenmakers, Van der Maas, and Grasman

(2007) proposed a simplified version of the DDM that fixed the across-trial variability parameters

to 0 and assumed that starting point was equidistant to the decision boundaries. In the ensuing

debate about the appropriateness of these simplifying assumptions, Ratcliff (2008) pointed

out that applying the simplified model to data generated from the full model resulted in biased

parameter estimates. However, in applications to real data, the generating model is unknown.

A simple heuristic to decide which across-trial variabilities to include in a model might be

to compare the mean correct and error RT and only include the necessary across-trial variability

parameters if the means differ. The main drawback of this approach is that mean differences

are not necessarily diagnostic. Across-trial variability parameters affect the entire distribution

of correct and error RTs, and in particular the tail quantiles. Changes in these quantiles are
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notoriously difficult to detect. A more principled approach might be to compare the results of

fitting models with and without across-trial variabilities (see also Vandekerckhove & Tuerlinckx,

2007). If both types of models yield the same conclusion, across-trial variabilities can be safely

neglected. If the conclusions differ, careful consideration should be given to the possible causes

of this discrepancy.

Finally, in recent years there has been increasing interest in the substantive interpretation

of the across-trial variability parameters. For example, several authors have argued that

variability in drift rate might be related to mind-wandering (McVay & Kane, 2012; Hawkins,

Mittner, Forstmann, & Heathcote, 2017). In these cases, where the across-trial variability

parameters themselves are of interest, researchers need to ensure that all possible precautions

have been taken to optimize estimation of the across-trial variability parameters (i.e., removal

or explicit modeling of outlier RTs, sufficient number of difficulty conditions and trials per

participant) before proceeding to interpret their results.

To sum up, independent of the particular DDM fitting method used, most of our

collaborators agree on two points. First, the DDM’s across-trial variability parameters are

inherently hard to estimate and there is considerable uncertainty associated with these estimates.

A method that can be used to improve this situation is to use parameter estimates from previous

studies to inform current estimates. Second, although the across-trial variability parameters

afford the DDM a high degree of flexibility, they are often not the focus of inference. Therefore,

users should give careful consideration to whether across-trial variability parameters are actually

needed in order to fit a particular data set.
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Appendix A Individual Contributions - Bayesian Estimation

Unless indicated otherwise, the known parameters for the Level 1 data are set to the true

value in each contribution and the DDM parameters are defined as above. In cases where the

non-decision time parameter represents the lower bound of the non-decision time distribution,

rather than the mean, we will use T ?
er instead of Ter.

A.1 Heathcote

A.1.1 Methods. Parameter estimates were obtained by Bayesian methods using the

Differential-Evolution Markov Chain Monte Carlo (DE-MCMC; ter Braak, 2006) sampler

implemented in the R language (R Core Team, 2015) in the Dynamic Models of Choice

(DMC; Heathcote, Lin, & Gretton, 2016, Heathcote et al., in press) software.2 DE-MCMC is

a multiple-chain Metropolis sampler with a proposal that automatically adapts to posterior

parameter correlations using a “crossover” step, where each chain is updated based on a weighted

linear combination of its state and the difference between the states of two other randomly

selected chains. During “burn-in” (initial iterations later discarded) we also used “migration”

steps to pull in chains stuck in low likelihood areas (see Turner, Sederberg, Brown, & Steyvers,

2013, for a tutorial overview of these methods). The DDM likelihood was calculated using the

rtdists package (Singmann et al., 2016), with the minimum value for each data point set to

10−10 to avoid numerical problems when calculating log-likelihoods.

Sampling used DMC defaults in most cases. For Level 1 and 2 the crossover weight

(γ) was set at 2.38/
√

D, where D, the number of chains, was set at three times the number of

estimated DDM parameters updated in a single block (D = 3 for Level 1 and D = 9 for Levels

2 and 3). Level 3 estimation was hierarchical, with the same settings when sampling DDM

parameters, except group-level parameter crossover weights were sampled from a uniform

2DMC is based on code originally written by Brandon Turner and Scott Brown, and comes with a set of tutorials

on fitting not only the DDM but also a variety of other models including the LNR (Heathcote & Love, 2012), LBA

(Brown & Heathcote, 2008) and the BEESTS model of the stop-signal task with trigger failures (Matzke, Love, &

Heathcote, 2017).
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Table 3

Specification of prior distributions for DDM parameters in Heathcote’s contribution.

a v T ?
er z sv sTer sz

Mean (µ) 1 2.5 0.3 0.5 1 0.5 0.5

Standard Deviation (σ ) 1 3 1 1 3 1 1

Lower Bound (L) 0 −∞ 0 0 0 0 0

Upper Bound (U) 2 ∞ 1 1 3 1 1

distribution on [0.5,1]. During burn-in the probability of doing a migration rather than cross-over

step was set at 0.05 for both DDM parameters and, where applicable, group-level parameters.

Sampled DDM parameters and corresponding independent truncated normal prior

distributions, N (µ,σ)[L,U ], are defined in Table 3. In contrast to the main text, we define

non-decision time (T ?
er) as the lower bound of the uniform non-decision time distribution. The

same prior was used for the drift rates in the easy, medium and hard condition, and for fits to

Levels 1 and 2. In the hierarchical case individual-level DDM parameters were assumed to come

from independent truncated normal group-level distributions (with truncation [0,∞] for a, v, T ?
er,

sv and sTer , and truncation [0,1] for z and sz). The group-level means had the same priors as in

Table 3. The group-level standard deviations were all given the same Gamma prior with shape

parameter 2 and scale parameter 0.25.

For Levels 1 and 2 burn-in was done in two stages. After obtaining initial starting values

by sampling from the prior, the DMC function run.unstuck.dmc repeatedly sampled fresh

sets of iterations of length nmc (here nmc = 100) with migration on (each starting from the

last value in the previous set). This was repeated until means of each chain’s summed posterior

log-likelihoods were all less than a criterion absolute difference (by default 10) from the median

of the chain means. Subsequently, thinning was set to 10 (i.e., only every 10th set of posterior

samples was retained; from here the number of iterations will refer to the number retained),

migration was turned off, and the run.converge.dmc function used to obtain a set of chains
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that are mixed together.

Mixing was quantified by the multivariate potential scale reduction factor R̂ (MPSRF;

Brooks & Gelman, 1998) calculated by the CODA package using transforms to improve normality

if appropriate (Plummer et al., 2016). Stationarity was simultaneously checked by splitting

the chains in half before calculating R̂ (Gelman et al., 2013). The run.converge.dmc

function first takes a fresh set of iterations (here 100), then sets of nmc iterations (here 50)

repeatedly sampled and added, with the first nmc iterations discarded if that improves R̂. The

process was run until R̂ was close to one (here the default < 1.1 was used). For Level 3 initial

fits to each individual data set using the same methods as applied to Level 2 were used to

obtain start points for group-level parameters, based on the means and standard deviations of

the parameter estimates for individual participants. Hierarchical models were then fit by the

h.run.unstuck.dmc and h.run.converge.dmc functions, which apply the tests to all

chains at both levels (i.e., to each participant individually and to the group-level).

The initial instructions for the collaborative project did not specify which boundary

corresponded to “left”. In all fits it was assumed that “left” corresponded to the lower bound and

sampling performed before it was clarified that the opposite was the case. To correct this, we refit

Level 1 with z fixed at 0.55, and the complement of the sampled z value (i.e., 1− z) is reported.3

A.1.2 Results. Two and three cycles of run.unstuck.dmc were required for Levels

1 and 2, respectively, and for both run.converge.dmc completed immediately without the

need for any additions. Median posterior estimates and 95% credible intervals for all levels are

shown in Table 4. For Level 1, posterior parameter estimates were only weakly correlated (at

3This error was actually detected before the clarification was issued as fixing z = .45 produced poor fits, and,

assuming left corresponded to the lower bound, fitting with z = .55 produced good fits and freely estimating all

parameters for the Level 1 data produced a median estimate of z = 0.554. True values (where known) were within

95% credible intervals for the latter fit (a = 0.95− 1.04, vEasy = 2.79− 3.81, vMedium = 2.1− 2.91, vHard =

1.31− 1.96, T ?
er = .29− .30), with little effect on sTer (0.097-0.117) but much more variability for sv (1.63-2.68)

and sz (0.03-0.51), consistent with Table 4. As re-doing Level 3 was time consuming and the fix straightforward,

refitting was only done for Level 1.
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most r = 0.23 between sv and sTer). Estimates for Level 2 show much greater uncertainty for sv

and sz but not for sTer . Much stronger correlations were evident between sv and T ?
er (.69), between

sv and a (.59), and between sv and the drift rates (.76 - .82), as well as among the three drift rates

(.64 - .72). For both levels observed and predicted cumulative distribution functions were a close

match, indicating a very good fit.

For Level 3 h.run.unstuck.dmc and h.run.converge.dmc completed

immediately (due to the good start points provided by individual fits). There was, however,

some visual evidence of a small degree of initial non-stationarity. This was addressed by taking

a fresh 100 iterations with results reported in Table 4. There were only weak correlations among

group-level parameters. Uncertainty about the group-level mean sv and sTer , was substantially

decreased relative to the Level 2 estimates, but this was less so for sz. The group-level estimate

µa was surprisingly much wider than the Level 2 estimate for a. Uncertainty in the group-level

standard deviation estimates was quite large, reflecting the small sample of 20 participants.

A.1.3 Advice. Although the automatic convergence procedures (i.e., the

run.unstuck.dmc followed by the run.converge.dmc functions described in detail in

the methods) worked well in this case they can sometimes fail in a number of ways. Migration

can cause false convergence at a local minimum followed by a sometimes long period of

apparent stationarity before posterior likelihoods suddenly start increasing, although this is rare

if migration probability is low, such as used here. When migration is left on overly long lower

likelihood (but still valid) samples are under-represented, especially, causing the initial samples

after migration to display a fairly subtle type of non-stationarity that automatic convergence

can sometimes fail to detect. It can also fail to pick up other problems, such as slow drifts due

to trade-offs between parameters in more complex models. Long time scale waves in chains for

highly auto-correlated parameters can be hard for automatic procedures to differentiate from

burn-in, although this can be ameliorated by appropriate thinning.4 Hence, visual inspection

4Thinning is not strictly necessary and always throws away some information so is sometimes not

recommended. However, as long as it is not excessive it makes handling samples (which can otherwise get very

large) more computationally convenient, and it can also make visual inspection easier.
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Table 4

Parameter estimates and uncertainty intervals reported by Heathcote.

a vEasy vMedium vHard T ?
er z sv sTer sz

Level 1

Estimate 2.22 0.10 0.48

LB 2.02 0.10 0.41

UB 2.43 0.11 0.54

Level 2

Estimate 0.81 3.75 3.27 2.15 0.38 0.55 1.92 0.10 0.16

LB 0.78 3.31 2.88 1.83 0.37 0.54 1.42 0.09 0.01

UB 0.84 4.32 3.78 2.56 0.38 0.57 2.50 0.11 0.40

Level 3 - µk

Estimate 0.79 4.38 3.13 1.94 0.39 0.54 1.50 0.16 0.19

LB 0.47 3.93 2.65 1.56 0.34 0.53 1.37 0.15 0.02

UB 1.00 4.85 3.63 2.30 0.44 0.55 1.65 0.16 0.30

Level 3 - σk

Estimate 0.41 1.01 1.10 0.81 0.10 0.02 0.24 0.01 0.18

LB 0.29 0.75 0.84 0.60 0.07 0.02 0.16 0.00 0.10

UB 0.79 1.42 1.50 1.12 0.14 0.03 0.37 0.01 0.32
Note. Estimate: posterior median, LB: lower bound of 95% credible
interval, UB: upper bound of 95% credible interval.
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of parameters chains, as well as their posterior log-likelihoods, is desirable as a final check5.

The plot.dmc function makes it easy to perform these checks, as illustrated in supplementary

materials.

Because across-trial variability parameters have a weak effect it is important to check

that priors are not overly influential. This can also be done with plot.dmc, which allows

priors to be imposed on posterior density estimates. For example, these plots clearly show sz

has the weakest updating among DDM parameters at Level 2, followed by sv, consistent with the

credible intervals in Table 4, with the graphs making this more immediately obvious. Similarly,

for Level 3 the weaker updating for a and sz group-level means is clear, as well as the generally

weaker updating of group-level standard deviation parameters. Overall, priors do not seem to

have been overly influential for across-trial variability parameters, with group-level standard

deviation parameters being the most suspect. In such cases it is advisable to check the sensitivity

of estimates to reasonable changes in the prior. However, fits with different priors for these

parameters (exponential with scale parameter one) did not affect estimates much.

In real data the minimal individual differences in sTer (median σ = 0.005) evident in the

Level 3 fits would be suspicious, and might indicate hierarchical sampling had fallen into a “zero

variance trap” (Lee & Wagenmakers, 2014). The DE-MCMC sampling of DDM between trial

variability parameters are prone to this problem if participant and group-level parameter chains

are kept in a fixed relationship, but randomly associating chains at the two levels, as was done

here, is usually a remedy. Also chain plots did not look characteristic of the zero variance trap

(where smallest estimates usually have little variation, whereas here although they were small

they were variable), so these results may not be suspicious in the present case.

5More robust automatic convergence procedures are under development in DMC and preliminary tests have

shown them to perform well in more difficult cases. Such approaches are particularly important in parameter

recovery studies when the required large numbers of fits make thorough visual inspection difficult, although even

in this context inspection of at least a subset of fits is highly recommended.
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Table 5

Specification of prior distributions for DDM parameters in Hawkins’ contribution.

a v T ?
er z sv sTer sz

Mean (µ) 2 2 0.5 0.5 0 0 0

Standard Deviation (σ ) 2 3 0.5 0.2 1 0.5 0.5

Lower Bound (L) 0 0 0 0 0 0 0

Upper Bound (U) ∞ ∞ ∞ 1 ∞ ∞ 1

Shape (m) 1 1 1 1 1 1 1

Scale (θ ) 1 2 1/3 1/3 1 1/3 1/3

A.2 Hawkins

A.2.1 Methods. No pre-processing was performed on any of the data sets. In

contrast to the main text, we defined non-decision time (T ?
er) as the lower bound of the uniform

non-decision time distribution. We used the DDM likelihood function as provided in the

rtdists package for the R statistical environment (Singmann et al., 2016).

In the Level 3 analysis we used the hierarchical Bayesian framework described

in Heathcote’s contribution to simultaneously estimate parameters at the participant and

group-levels. The parameterization of the truncated normal prior distributions for the group-level

means, N (µ,σ)[L,U ], and the parameterization of the Gamma prior distributions for the

group-level standard deviations, Γ(m,θ), are shown in Table 5. The half-normal prior distribution

on the three across-trial variability parameters places most density at low values, meaning that

non-zero estimates of the across-trial variability parameters were driven by data. The mildly

informative prior distributions placed on the group-level parameters were loosely drawn from

Matzke and Wagenmakers (cf. Table 3, 2009).

The Level 1 and 2 analyses were not hierarchical (single participant estimation).

Therefore, those analyses used the group-level mean (N (µ,σ)[L,U ]) prior distributions

specified above as participant-level prior distributions.
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Parameters were estimated using differential evolution Markov chain Monte Carlo

(DE-MCMC; Turner et al., 2013), using the default settings (see Turner et al., 2013). We set

the number of MCMC chains to 3 times the number of participant-level parameters (i.e., 9

chains in the Level 1 analysis, 27 chains in the Level 2 and 3 analyses), which is the upper

limit recommended by Turner et al. We took 4,000 posterior samples from each chain with a

burn-in period of 2,000 samples. Convergence was monitored through visual inspection and the

multivariate potential scale reduction factor R̂ (Brooks & Gelman, 1998).

To provide point estimates and measures of uncertainty, we summarize the parameter

estimates using the posterior median and the 95% highest density interval (HDI; Kruschke,

2011), the smallest interval to contain 95% of the marginal posterior density of a parameter.

We summarize individual participant parameter estimates in the Level 1 and 2 analyses, and

group-level estimates of the mean and standard deviation parameters in the Level 3 analysis.

A.2.2 Results.

Level 1. Visual inspection and R̂ indicated chain convergence (R̂ = 1.01). The parameter

estimates are shown in Table 6. The three across-trial variability parameters appeared to estimate

well, with relatively narrow uncertainty intervals.

Level 2. Visual inspection and R̂ indicated chain convergence (R̂ = 1.03). The parameter

estimates are shown in Table 6. sTer appeared to estimate well. sv was strongly correlated with the

three drift rate parameters (r′s ≥ .78), which increased the size of its uncertainty interval. The

posterior distribution of sz pushed against the lower boundary (0) so the posterior median may be

misleading. sz was relatively strongly correlated with T ?
er (r = .72).

Level 3. Visual inspection indicated that the group-level chains of the main model

parameters had converged (i.e., vEasy, vMedium, vHard, a, z, T ?
er), but the three across-trial variability

parameters had not converged. This was at least partially due to the participant-level chains: a

few participants had a single chain that had not converged, which predominantly affected one or

more of their across-trial variability parameters. Removing 3 (of 27) chains mostly eliminated the

problem and led to relatively good convergence for all 20 participants (mean R̂ across participants
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1.13, range 1.09 -– 1.17). Such post-hoc removal of chains can be justified on the basis that

chains are independent, and that removing those chains did not substantially influence the

effective sample size. With those chains removed, the group-level R̂ was 1.27. This reduced to

1.04 when only considering the main model parameters. The R̂s for the group-level across-trial

variability parameters were: µsv = 1.21, σsv = 1.25, µsz = 1.19, σsz = 1.12, µsTer
= 1.03,

σsTer
= 1.11. Some chains for the group-level standard deviation parameters (i.e., σsv , σsz ,

σsTer
) became stuck at low values, which strongly influenced the effective sample size for those

parameters (see online appendix). Therefore, estimates of the across-participant variance in

the across-trial variability model parameters should be interpreted with caution. The parameter

estimates are shown in Table 6.

A.2.3 Advice. The Level 1 and 2 analyses suggest the Bayesian parameter estimation

approach outlined here has few difficulties when participants are treated as fixed effects (i.e., each

participant’s model parameters are estimated independently of all other participants).

In contrast, the Level 3 analysis suggests that hierarchical Bayesian parameter estimation

of the DDM can be challenging, at least when attempting to obtain participant-level estimates

of the three across-trial variability parameters (i.e., sv, sz, sTer) when participants are treated as

random effects. There was evidence of poor sampling behavior: some chains failed to converge

and some group-level chains became stuck at low values. Post-hoc removal of chains that failed

to converge at the participant level partially alleviated the problem. Although not principled,

this post-processing method is one way to rapidly improve convergence, provided sufficiently

many chains were sampled. One alternative would be to run more sampling iterations with the

methods outlined above, though we note that we already sampled 4000 iterations so this approach

is likely to be very slow. Another alternative is to adopt different sampling rules; for example,

incorporating the migration step in the DE-MCMC sampler (see Turner et al., 2013), which can,

at times, rapidly improve convergence particularly for participant-level parameter estimates.

However, even implementing these changes might not alleviate the problem where

some chains for the group-level scale parameters became stuck at very low values. When a
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Table 6

Parameter estimates and uncertainty intervals reported by Hawkins.

a vEasy vMedium vHard T ?
er z sv sTer sz

Level 1

Estimate 2.22 0.10 0.47

LB 2.01 0.10 0.40

UB 2.45 0.11 0.53

Level 2

Estimate 0.81 3.80 3.32 2.17 0.38 0.55 1.96 0.10 0.16

LB 0.78 3.28 2.86 1.82 0.37 0.54 1.40 0.09 0.00

UB 0.85 4.37 3.82 2.56 0.38 0.57 2.57 0.11 0.38

Level 3 - µk

Estimate 0.79 4.44 3.13 1.89 0.39 0.54 1.56 0.15 0.29

LB 0.51 3.91 2.44 1.27 0.35 0.53 1.41 0.15 0.11

UB 1.02 4.97 3.78 2.40 0.44 0.55 1.71 0.16 0.39

Level 3 - σk

Estimate 0.41 1.10 1.25 0.90 0.10 0.02 0.09 0.00 0.08

LB 0.26 0.76 0.84 0.58 0.07 0.02 0.01 0.00 0.01

UB 0.66 1.55 1.91 1.47 0.13 0.03 0.29 0.01 0.21
Note. Estimate: posterior median, LB: lower bound of 95% highest density
interval, UB: upper bound of 95% highest density interval.
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parameter exerts only a small influence on the likelihood function of the model - the parameter

is not well constrained by data, which is the case for the across-trial variability parameters of

the DDM - there is large uncertainty in its corresponding posterior distribution. For example, in

the Level 2 analysis the width of the 95% HDI - a measure of uncertainty - for the sz parameter

was over 13 times wider than the 95% HDI for the z parameter. This means there was a much

larger range of plausible values for sz than z; estimates of sz were less constrained by data.

This level of uncertainty can cause problems when hierarchically estimating the across-trial

variability parameters of the DDM. This is because participant-level estimates of the across-trial

variability parameters are only weakly informed by data, so the hierarchical model shrinks those

estimates to very similar values across participants, which produces close-to-zero estimates

of the group-level scale parameters. Consequently, caution is warranted when interpreting the

group-level estimates of these parameters. It is possible that interpretation of the group-level

estimates of the main DDM parameters is largely unaffected.

A.3 Van Ravenzwaaij

A.3.1 Methods.

Inspection of the behavioral data showed that no pre-processing was necessary. All

experiments were analyzed using a (hierarchical) Bayesian implementation of the DDM (Ratcliff,

1978, 2002). I used the rtdists package in R (available from https://cran.r-project.org/

web/packages/rtdists/rtdists.pdf) to get densities for the DDM parameters. For optimization,

I modified the code for the differential evolution Markov chain Monte Carlo (DE-MCMC)

hierarchical Bayesian implementation that was originally developed for the Linear Ballistic

Accumulator model (see Brown & Heathcote, 2008 for the model, and Turner et al., 2013 for

the DE-MCMC hierarchical Bayesian implementation). Note that the code can be adapted for

individual model fits, which is what I did for the first two data sets.

In my original fit for Level 1, I found that fixing the parameters to their known values led

to unsatisfactory parameter estimates. As such, I resorted to the procedure I would follow if I had

encountered this data set “in the wild”: I left all parameters free to vary (including the known
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ones).

Similar to Heathcote’s contribution, DDM parameters for Level 1 and Level 2 were

sampled from independent truncated normal prior distributions, N (µ,σ)[L,U ], with the

parameterization given in Table 7. These mildly informative prior distributions placed on the

group-level parameters were loosely drawn from Matzke and Wagenmakers (cf. Table 3, 2009).

The first fits led to satisfactory posterior predictives (i.e., the models fit the data well, see section

A.3.2 below), but used an unrealistic parameterization for the prior distribution for sv.6 The

correct prior distribution is sv ∼N (1,1)[0,∞]. After consulting with the first and senior author,

the decision was made to report here the results of the original fits and of a corrected set of fits

that use the correct prior distribution for sv and fix the known parameters for Level 1 to their true

values.

Starting points for the Markov chains were drawn from the following distributions:

vEasy ∼ N (3.5,0.35)[0,∞], vMedium ∼ N (2.5,0.25)[0,∞], vHard ∼ N (1.5,0.15)[0,∞], a ∼

N (1,0.1)[0,∞], z ∼ N (0.5,0.05)[0,∞], Ter ∼ N (0.3,0.03)[0,∞], sz ∼ N (0.1,0.01)[0,∞],

sv ∼ N (0.1,0.01)[0,∞], and sTer ∼ N (0.1,0.01)[0,∞]. Note that for the corrected fits, the

starting point for sv ∼N (1,0.1)[0,∞].

Similar to Heathcote’s contribution, individual-level parameters for the Level 3 data set

were sampled from a truncated Gaussian group-level distribution. Thus, for each parameter to

be estimated, I estimated a group-level mean parameter and a group-level standard deviation

parameter using the parameterization given in Table 7. Priors for all group-level standard

deviation parameters were gamma distributions with a shape and a scale parameter of 1, except

for parameters σz and σsz which instead had a shape parameter of 0.1 in order to put more

prior mass on low standard deviation values, because the starting point z is naturally bounded

between 0 and 1.7 Starting point distributions for the Markov chains for group-level mean µ

6This prior makes sense for a diffusion coefficient s = 0.1, but the diffusion coefficient for these data sets is

s = 1. I detected this error after publication of the generating parameter values.
7These prior settings are fairly uninformative. As a result, the specific settings will not have a large influence on

the shape of the posterior.
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Table 7

Specification of prior distributions for DDM parameters in van Ravenzwaaij’s contribution.

a vEasy vMedium vHard Ter z sv sTer sz

Levels 1 and 2

Mean (µ) 1 3.5 2.5 1.5 0.3 0.5 0.1 0.1 0.1

Standard Deviation (σ ) 1 3.5 3.5 3.5 0.3 0.2 0.1 0.1 0.1

Lower Bound (L) 0 0 0 0 0 0 0 0 0

Upper Bound (U) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Level 3

Mean (µ) 1 3.5 2.5 1.5 0.3 0.5 0.1 0.1 0.1

Standard Deviation (σ ) 0.5 1.5 1 0.5 0.1 0.1 0.05 0.05 0.05

Lower Bound (L) 0 0 0 0 0 0 0 0 0

Upper Bound (U) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Shape (m) 1 1 1 1 1 0.1 1 1 0.1

Scale (θ ) 1 1 1 1 1 1 1 1 1
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were all identical to starting point distributions for the individual parameters, and starting point

distributions for group-level σ parameters were derived from starting point distributions for the

individual parameters by dividing the mean by 10 and the standard deviation by 2.

For sampling, I used 32 interacting Markov chains for all runs, and ran each for 1,000

burn-in iterations followed by 1,000 iterations after convergence. The interacting chains are

an integral component of the DE algorithm and speed up convergence when parameters to be

estimated are highly correlated (for details, see ter Braak, 2006). The two tuning parameters

of the differential evolution proposal algorithm were set to standard values used in previous

work: random permutations drawn uniformly from the interval [−.001, .001] were added to all

proposals; and the scale of the difference added for proposal generation was set to γ = 2.38×

(2K)−0.5, where K is the number of parameters per participant. No migration step was included.

Fitting the data sets for Levels 1 and 2 took about 3 hours each on an Intel Core i3-3220 CPU

with 3.30GHz using a single core. Fitting the data set for Level 3 took about 14 hours using four

cores.

A.3.2 Results.

Level 1. Convergence of the MCMC chains can be examined in Figure A1, found in the

online appendix. Visual inspection of Figure A1 shows that parameter convergence is fine for

all parameters except sz and sv. For these parameters, the histograms touch the truncation value

of zero, and the mixing seems to be relatively poor. The posterior predictive data for the fitted

model is compared with the data in Figure A2. The original data are shown by points joined

by lines, and distributions of posterior predictive data are shown by box-and-whiskers. Every

observation contained in each box-and-whiskers is based on data generated from a sample from

the joint posterior. Boxes contain 50% of the observations, and tails extend to 100%. The top-left

panel shows correct RTs, the bottom-left panel shows error RTs, and the top-right panel shows

proportion correct. Deciles of .1, .5, and .9 are displayed. The figure shows that the model fit the

data well, except for an underestimation of error RTs for the slowest quantile.

Convergence of the MCMC chains for the corrected fit can be examined in Figure A3,
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found in the online appendix. Visual inspection of Figure A3 shows that parameter convergence

is fine for all three parameters. The posterior predictive data for the fitted model is compared

with the data in Figure A4. The figure shows that the model fit the data well, except for an

overestimation of error RTs for the slowest quantile. This overestimation in the corrected fit,

compared to the underestimation in the initial fit, is most likely due to the larger values of the

across-trial variability parameters in the corrected fit, which result in higher variability of the

predicted error RTs. Interestingly, the initial and corrected model fits both seem to provide a good

account of the data and they seem to be qualitatively similar.

Estimated parameters for the two fits can be found in the sections labeled “Level 1” and

“Level 1 - Corrected” in Table 8. Interestingly, despite both the initial and corrected fit providing

a satisfactory model fit, the estimated parameters are very different. Aside from the expected

difference in the sv parameter, all drift rate v values obtained in the initial fit were lower than the

known values, boundary separation a obtained in the initial fit was lower than the known value,

and sz obtained in the initial fit was lower than the value obtained in the corrected fit.

Level 2. Convergence of the MCMC chains for the first fit can be examined in Figure A5,

found in the online appendix. Visual inspection of Figure A5 shows that parameter convergence

is fine for all parameters except sz and sv. For these parameters, the histograms touch the

truncation value zero, and the mixing seems to be relatively poor. The posterior predictive data

for the fitted model is compared with the data in Figure A6. The figure shows that the model fit

the data well, except for an underestimation of error RTs for the slowest quantile.

Convergence of the MCMC chains for the corrected fit can be examined in Figure A7,

found in the online appendix. Visual inspection of Figure A7 shows that parameter convergence

is fine for all parameters except sz. For this parameter, the histogram touches the truncation

value zero, and the mixing seems to be relatively poor. The posterior predictive data for the fitted

model is compared with the data in Figure A8. The figure shows that the model fit the data well,

except for an overestimation of error RTs for the slowest quantile. Similar to the results for Level

1, this overestimation in the corrected fit, compared to the underestimation in the initial fit, is
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Table 8

Parameter estimates and uncertainty intervals reported by van Ravenzwaaij.

a vEasy vMedium vHard Ter z sv sTer sz

Level 1

Estimate 0.90 2.22 1.65 1.05 0.43 0.45 0.29 0.09 0.07

LB 0.88 2.05 1.49 0.88 0.33 0.44 0.04 0.08 0.00

UB 0.92 2.40 1.82 0.92 0.34 0.46 0.53 0.10 0.18

Level 1 - Corrected

Estimate 2.30 0.11 0.36

LB 2.09 0.10 0.23

UB 2.52 0.12 0.44

Level 2

Estimate 0.77 2.93 2.51 1.59 0.42 0.55 0.18 0.09 0.06

LB 0.75 2.72 2.32 1.41 0.42 0.53 0.02 0.08 0.00

UB 0.79 3.15 2.73 1.76 0.43 0.56 0.42 0.10 0.19

Level 2 - Corrected

Estimate 0.80 3.69 3.22 2.10 0.43 0.55 1.84 0.10 0.12

LB 0.78 3.31 2.85 1.81 0.42 0.54 1.38 0.09 0.01

UB 0.83 4.20 3.68 2.46 0.43 0.57 2.37 0.11 0.27
Note. Estimate: posterior median, LB: lower bound of 95% credible
interval, UB: upper bound of 95% credible interval.



ESTIMATING ACROSS-TRIAL PARAMETERS 63

most likely due to the larger values of the across-trial variability parameters in the corrected fit,

which result in higher variability of the predicted error RTs. As for the Level 1 data set, the initial

and corrected model fits both seem to provide a good account of the data and they seem to be

qualitatively similar.

Estimated parameters for the two fits can be found in “Level 2” and “Level 2 - Corrected”

in Table 8. Interestingly, despite both the initial and corrected model fit providing a satisfactory

model fit, the estimated parameters are very different. Aside from the expected difference in the

sv parameter, all drift rate v values obtained in the initial fit were lower than values obtained in

the corrected fit, and sz obtained in the initial fit was somewhat lower than the value obtained in

the corrected fit.

Level 3. Convergence of the MCMC chains for group-level parameters can be examined

in Figure A9. The figure shows that not all chains converged. On top of that, based on a visual

inspection of the posterior predictives I concluded that the model fit was unsatisfactory, I was

unable to get a better fit within the allotted time. As I am not confident about the parameter

estimates, I do not report the results of this model fit further here.

A.3.3 Advice.

It is not a secret that I am a proponent of fitting the “simple DDM” without across-trial

variability parameters (see e.g., van Ravenzwaaij & Oberauer, 2009, van Ravenzwaaij et al.,

2017). The gain of including across-trial variability parameters, being able to capture fast or slow

errors in the data as well as the leading edge of RT distributions, is in my opinion outweighed

by the cost of a poorer ability to capture individual differences and reduced statistical power

to detect experimental effects. It is important to note here that my initial fit with incorrect

specification of the prior distribution for sv led to posterior predictives that were qualitatively

similar to those presented for the corrected prior distribution. However, the estimated parameter

values were very different, suggesting that the full model with variability parameters may be

poorly identified.

Based on the results of fitting the three data sets, it seems that the problem is most
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pertinent for parameter sz. If a researcher does have strong theoretical reasons to fit across-trial

variability parameters, they should be aware of the known issues with reliably estimating these

parameters (and report those as such in their manuscript). When researchers do wish to fit the full

DDM in a Bayesian framework, it is crucial to specify wide priors for the variability parameters.

Failing to do so leads to substantial differences in results, as became clear from the initial model

fits for Levels 1 and 2.

A.4 Frank, Krypotos, & Wiecki 8

A.4.1 Methods. We estimated the model parameters for the Level 1 and 2 data sets

using Bayesian estimation. Given that in the Level 3 data set responses from multiple participants

were available, we used hierarchical Bayesian estimation (Wiecki et al., 2013). A key advantage

of this parameter estimation approach is that parameters for each individual participant are

estimated while being constrained by the group-level parameter distribution (Wiecki et al., 2013).

As a result, the DDM parameters are estimated more accurately than if each participant’s data are

fit independently.

We quantified the parameter estimates by means of the posterior distributions, which were

approximated via slice sampling (Neal, 2003). As we have done in previous studies (e.g., Frank

et al., 2015), we estimated the model parameters using the HDDM package for Python (Wiecki

et al., 2013).

In HDDM, the top and lower boundary could be defined based on accuracy (i.e., the upper

boundary will be coded as correct response and the lower as error response; accuracy-coding) or

based on the presented stimulus (i.e., the upper boundary coded as participants pressing the right

button, and the lower boundary as participants pressing the left button; stimulus-coding). We

initially decided to run an accuracy-coding model, which is most typical. However, in response to

a query about this question from the study organizers (and after the results of the initial study had

been communicated), we realized that the parameters of this model could not be compared with

the parameters of the original study, which were generated using a stimulus-coding model. In

8Contributors are listed in alphabetical order.
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particular, the z parameter indicates a bias toward left or right responding, which is not possible

to capture with accuracy-coding, and it is also possible that this influences the estimates of other

parameters. As such, we decided to fit a stimulus-coding model to correspond to the generative

model, but using otherwise identical code and procedures. The results of both models were

comparable in terms of the across-trial variability performance. Importantly, however, the

stimulus-coding model results can be easily interpreted, with their interpretation being in line

with that of the initial data set. Here, we present the results of the stimulus-coding models. The

results for both, accuracy and stimulus-coding model are available at https://osf.io/fjy8z/.

We used informative (empirical) priors for our model parameters. Specifically, the prior

distributions of the group means for each parameter roughly resemble the parameter values

reported in the literature, as summarized in Matzke and Wagenmakers (2009). For a visualization

of the priors, against the histograms of values summarized in Matzke and Wagenmakers, see

Figure 1 of the Supplementary material of Wiecki et al. (2013). Further details on the sampling

algorithms used in the model can be found in Wiecki, Sofer, and Frank (2016), and on the HDDM

website (http://ski.clps.brown.edu/hddm docs/).

A.4.2 Parameter estimation procedure.

Level 1. We initially did not analyze this data set as the default options of HDDM do not

allow fixing the main DDM parameters to specific values, but rather require them to be estimated

from the data. However, in response to queries from the organizers, we decided to fit the whole

model to the data by following the same modeling approach as for the Level 2 data.

Level 2. We ran two Markov Monte Carlo chains, with each chain having 5,000 samples,

with 3,000 samples as burn-in. The convergence of each chain was assessed via visual inspection

and by computing the potential scale reduction factor R̂ (Gelman & Rubin, 1992) for each

parameter.

Level 3. We used the same approach as for the Level 2 data set but this time different

parameter values were computed for each participant for the main DDM parameters. The

across-trial variability parameters were computed only on the group-level. This was done as these
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parameters are difficult to estimate for individual participants, and as such it is recommended

to be estimated at the group-level (Wiecki et al., 2016). Also, given the long computation times

for this model (see section A.4.4 below), we could run only a single chain within the available

time. Since we had a single chain, we assessed convergence by the computation of the Geweke

statistic (Geweke, 1992), computation of the Monte Carlo error statistic, by visual inspection

of the posterior distributions, as well as by visually inspecting the mean and variance across the

posterior distributions in windows of 200 samples to ensure they were stable.

A.4.3 Results. We present the results of a single chain for all data sets in Table 9. All

parameters reached convergence, although not at the same speed. For example, for the Level 3

data, the sv, sz, and sTer parameters could benefit for more samples, despite the visual inspection

of the data suggesting convergence.

A.4.4 Advice. There are two issues that deserve attention when using the above

approach. The first relates to HDDM not allowing setting fixed values for the main parameters.

Although in principle the HDDM code could be modified to permit this, we did not think that

in general one would want to assume fixed parameter values when fitting real data. However,

it is remarkable that even without fixing the known parameters, we could recover almost all

parameter values by just fitting the full model. The second issue relates to the computing time

needed. The user should be aware that estimating the parameters of the full model for a data

set with multiple data points (e.g., Level 3 data), including additional participants and/or more

trials per participant, will require considerably more time than dealing with a data set with

fewer data points or when the between trial parameters are not included. It should also be noted

that meaningful estimates of across-trial variability parameters need a lot of MCMC samples

to reach convergence (Wiecki et al., 2016). In large parameter recovery experiments we have

found the across-trial variability parameters to not be identifiable on the participant-level to

any meaningful degree. In addition, convergence of these parameters is very slow, compared

to other parameters. Estimating these parameters on the group-level alone overcomes both of

these problems. Researchers are advised to estimate these parameters only when they are relevant
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Table 9

Parameter estimates and uncertainty intervals reported by Frank, Krypotos & Wiecki.

a vEasy vMedium vHard Ter z sv sTer sz

Level 1

Estimate 0.99 3.24 2.47 1.61 0.35 0.551 2.12 0.11 0.27

LB 0.95 2.76 2.11 1.30 0.34 0.541 1.63 0.09 0.02

UB 1.04 3.83 2.97 1.98 0.36 0.571 2.72 0.12 0.52

Level 2

Estimate 0.81 3.70 3.22 2.11 0.43 0.451 1.84 0.10 0.14

LB 0.78 3.29 2.83 1.79 0.42 0.431 1.37 0.09 0.01

UB 0.84 4.15 3.64 2.45 0.43 0.461 2.33 0.11 0.34

Level 3 - µk

Estimate 0.86 4.49 3.14 1.92 0.47 0.461 1.55 0.15 0.28

LB 0.70 3.93 2.67 1.48 0.43 0.451 1.44 0.15 0.22

UB 1.04 4.86 3.62 2.39 0.52 0.471 1.66 0.15 0.34
Note. Estimate: posterior mean, LB: lower bound of 95% credible interval,
UB: upper bound of 95% credible interval. 1These parameter estimates
were misreported due to a bug; the values reported here are 1− z instead
of z. Correcting for this misreporting gives estimates much closer to the
generating parameter value z = 0.55.

to the research question. Alternatively, one could simply continue sampling until chains reach

convergence.

A.5 Annis & Palmeri

A.5.1 Methods. Each of the three data sets were fitted within a Bayesian framework.

We did not perform any preprocessing. In the results reported below T ?
er is the lower bound of the

non-decision time distribution.

Level 1 Model. For the Level 1 data set, across-trial variability parameters sv and sTer

were sampled from truncated normal prior distributions, N (µ,σ)[L,U ], and sz was sampled
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Table 10

Specification of prior distributions for DDM parameters in Annis & Palmeri’s contribution.

a vEasy vMedium vHard T ?
er z sv sTer sz

Levels 1 and 2

Mean (µ) 1 3 2 1 0.3 – 1 0.1 –

Standard Deviation (σ ) 1 1 1 1 0.5 – 0.5 0.25 –

Lower Bound (L) 0 0 0 0 0 0 0 0 0

Upper Bound (U) ∞ ∞ ∞ ∞ ∞ 1 ∞ ∞ 1

Level 3

Mean (µ) 1 3 2 1 0.5 0.5 1 0.1 0.1

Standard Deviation (σ ) 5 5 5 5 2 1 5 5 2

from a uniform prior U (L,U). The parameterization of the priors is given in Table 10. These

priors were loosely based on those reported in Matzke and Wagenmakers (2009).

Level 2 Model. For the Level 2 data set, we used moderately informative priors based

on Matzke and Wagenmakers (2009). All parameters were sampled from truncated normal

prior distributions, N (µ,σ)[L,U ], except z and sz, which were sampled from a uniform prior

U (L,U). The parameterization of the priors is given in Table 10.

Level 3 Model. The Level 3 data set consisted of 20 simulated participants. The Bayesian

model described above, applied to the Level 2 data, was also used to estimate each simulated

participant’s parameters in the Level 3 data; because we were trying out a new Bayesian

inference engine (LaplacesDemon) and given the relatively constrained time window required by

this collaborative project, we did not have time to develop and fit a hierarchical model and instead

took a two-step multilevel approach (e.g., Achen, 2005, Gelman & Hill, 2007, p. 270). After

estimating the participant-level posterior means, we treated the participant-level posterior means

as observed data in another Bayesian model to estimate group-level means. Participant-level

posterior means were assumed to be normally distributed, with the parameterization given in
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Table 10. For simplicity and to make the priors less informative we chose not to include bounds

on any of the prior distributions. Priors on the standard deviations were weakly informative

(Gelman, 2006) half-Cauchy distributions with location parameter 0 and scale parameter 5.

Fitting Methods and Results. Likelihoods for the DDM were obtained from the

rtdists package (Singmann et al., 2016). Each data set was fit using the LaplacesDemon

package in R Statisticat LLC (2016), which contains a suite of Bayesian tools. We first used

Laplace approximation to estimate the modes and covariance matrix for each simulated subject

from each data set using initial starting values based on those found in Table 3 of Matzke and

Wagenmakers (2009). Next, we obtained estimates of the marginal posterior means and 95%

highest density intervals (HDI) via Componentwise Adaptive Gauss-Hermite Iterative Quadrature

using the posterior modes and covariance matrix obtained from the Laplace approximation. For

the first and second data sets, we report the posterior means and 95% HDI’s obtained from the

iterative quadrature. For the Level 3 data set, we applied the same model used for the Level

2 data set to each of the simulated participants. This resulted in 20 participant-level posterior

means for each parameter. Using these means as data, we then obtained the group-level means

and standard deviations. The model was fitted with Stan (Carpenter et al., 2017). We ran 3

chains for 2000 iterations and discarded the first 1000 samples. Chains were visually assessed

for convergence and the potential scale reduction factor R̂ (Gelman & Rubin, 1992) for all

parameters was < 1.1.

A.5.2 Results. Tables 11 shows the posterior means, standard deviations, and 95%

HDIs for the DDM parameters for Levels 1 2, and 3. The Level 3 section of the table shows

the estimated group-level means and standard deviations of the participant-level parameters.

Figures of the fits of the model for each data set can be found in the online appendix. For the

Level 1 data, the model provided adequate fits, but less so for incorrect responses for left stimuli,

especially in the easy condition. We suspect this is due to the low number of incorrect responses

in the easy left stimulus condition. The model also had difficulties fitting the Level 2 data

especially for incorrect responses. For Level 3, we obtained reasonable fits with the exception
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of some overestimates of error responses times for certain subjects.

A.5.3 Advice. The LaplacesDemon package contains numerous methods for fitting

Bayesian models. Our advice to users fitting the DDM using this package would be to start with

a Laplace approximation to estimate the posterior modes and covariance matrix. We found this

step to greatly improve the accuracy of the iterative quadrature and believe it would likely lead

to faster convergence of MCMC chains. There are many different optimization algorithms used

internally by the Laplace approximation routine. We found that the Nelder-Mead Simplex

algorithm produced the best fits in the least amount of time. Once the posterior modes and

covariance matrix are obtained these can then be input into one of many other algorithms in

LaplacesDemon such as iterative quadrature, Particle Monte Carlo (PMC), or Markov Chain

Monte Carlo (MCMC) to more efficiently obtain posterior estimates. We found that this two-step

process led to high quality fits in most cases.

A drawback of the iterative quadrature method we used is that it is only useful for models

with 10 or fewer parameters. Therefore, it cannot be used for hierarchical models. If the user is

interested in fitting a hierarchical model we recommend first obtaining posterior modes for each

subject using Laplace approximation and then using these as starting points in one of the various

MCMC or PMC algorithms available in LaplacesDemon.

Appendix B Individual Contributions - Maximum-Likelihood Estimation

B.1 Singmann & Kellen

B.1.1 Methods. We estimated the DDM parameters using a trialwise maximum

likelihood procedure (Myung, 2003), which was implemented with the statistical software R (R

Core Team, 2015) and package rtdists (Singmann et al., 2016). Because we did not impose

any hierarchical structure at the level of the parameters, we confined our analysis to the first two

data sets (Level 1 and Level 2). We also did not exclude any trials because all RTs were within

normal ranges (fastest RT = 0.307 s, slowest RT = 1.774 s). For each data set we used a wrapper

function for the probability density function of the DDM. This wrapper function had separate

drift rate value for each condition, with a positive sign for right stimuli and a negative sign for left
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Table 11

Parameter estimates and uncertainty intervals reported by Annis & Palmeri.

a vEasy vMedium vHard T ?
er z sv sTer sz

Level 1

Estimate 2.16 0.10 0.47

LB 1.98 0.10 0.42

UB 2.35 0.11 0.52

Level 2

Estimate 0.80 3.48 3.02 1.96 0.38 0.55 1.57 0.10 0.01

UB 0.78 3.24 2.79 1.75 0.37 0.54 1.37 0.09 0.00

LB 0.81 3.72 3.25 2.17 0.38 0.56 1.77 0.10 0.19

Level 3 - µk

Estimate 0.81 4.17 2.97 1.82 0.39 0.54 1.18 0.15 0.14

UB 0.64 3.71 2.45 1.45 0.35 0.53 1.00 0.15 0.09

LB 0.98 4.63 3.47 2.20 0.43 0.55 1.35 0.16 0.20

Level 3 - σk

Estimate 0.38 1.02 1.13 0.84 0.10 0.02 0.39 0.01 0.13

UB 0.28 0.73 0.81 0.61 0.07 0.02 0.28 0.01 0.10

LB 0.53 1.44 1.60 1.19 0.14 0.03 0.54 0.01 0.19
Note. Estimate: posterior mean, LB: lower bound of 95% highest density
interval, UB: upper bound of 95% highest density interval.
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stimuli. The data and wrapper function were passed to a non-linear minimization algorithm that

searched for the parameters that minimize the negative sum of the log-likelihoods.9

Initially, we considered a variety of different non-linear optimization routines (for

an overview, see Nash & Varadhan, 2011), but ultimately settled on the nlminb algorithm

(Kaufman & Gay, 2003), which implements a variation of Newton’s method that allows for the

use of analytical and approximated (i.e., quasi-Newton) gradients or Hessians (in the present

case, we had to rely on the latter). Our preference for this algorithm is in part due to its ability to

quickly converge on global optima (i.e., it rarely gets stuck in local optima) but also to our long

experience with it when fitting different types of models (see also Singmann & Kellen, 2013).

In order to estimate the uncertainty of our parameter estimates, we implemented a

non-parametric bootstrap procedure (Efron & Tibshirani, 1994). For each data set we created

1000 bootstrapped data sets. The bootstrap was performed in a stratified manner: We randomly

sampled with replacement from each drift rate by stimulus type condition (i.e., the ratio of

the different item types remained the same, but the distribution of RTs and responses within

each item type was bootstrapped). Note that individual trials (i.e., combination of RT and

corresponding response) remained intact throughout this procedure. We avoided local minima

by performing five fitting runs with independent initial start values for each (bootstrapped or

original) data set, and only considering the results from the best run.

B.1.2 Results. We evaluated model fit by visually comparing the observed RT

distributions with the predicted RT distributions. These comparisons suggested a good fit for

both data sets (see supplementary materials). In the results reported below, T ?
er is the mean of the

non-decision time distribution.

Level 1. The across-trial variabilities for the Level 1 data could be estimated with

reasonable precision, and the bootstrap parameter-distributions appeared to take on a Gaussian

shape (see supplementary materials). The parameter estimates are given in Table 12.

9The full R scripts for performing the analysis reported here are available in the supplemental materials. See also

https://cran.rstudio.com/web/packages/rtdists/vignettes/reanalysis rr98.html.
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Table 12

Parameter estimates and uncertainty intervals reported by Singmann & Kellen.

a vEasy vMedium vHard T ?
er z sv sTer sz

Level 1

Estimate 2.22 0.10 0.47

LB 2.00 0.09 0.37

UB 2.43 0.11 0.53

Level 2

Estimate 0.80 3.63 3.17 2.07 0.38 0.44 1.79 0.10 0.00

UB 0.78 3.21 2.79 1.76 0.37 0.43 1.26 0.09 0.000

LB 0.83 4.28 3.69 2.50 0.38 0.46 2.42 0.11 0.27
Note. Estimate: ML estimate, LB: lower bound of 95% bootstrap confidence
interval, UB: upper bound of 95% bootstrap confidence interval.

Level 2. The parameter estimates, the univariate distribution of the bootstrapped

parameters, as well as the bivariate scatterplots for the Level 2 data are presented in Figure 10.

The histograms clearly show a problem with the sz parameter as its distribution exhibits a

bimodal shape, with one large peak at 0 and a smaller peak around 0.2. None of the other

univariate parameter distributions appeared to be pathological. In the case of the bivariate

scatterplots, we found considerable correlations among several parameters. These correlations

were especially large for sv (when paired with the other drift rates and sTer), between a and z,

among the three drift rates, and between sz and T ?
er. Moreover, we found the precision of drift rate

and drift rate variability parameters to be rather low. The parameter estimates are given in Table

12.

B.1.3 Advice. Our results suggest a differential pattern regarding the utility of

estimating the across-trial variability parameters in the DDM. If one has as much data as in the

present case, sTer , and to a lesser extend sz, can be estimated with reasonable precision. Regarding

sz, the analysis of the Level 2 data suggests that when the variability is in fact at the lower bound
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of zero, any small inaccuracy will lead towards an inflated estimate. Given that it is doubtful

whether sz can be truly zero in any real data set, we do not find this to be a severe problem.

The presence of large variabilities for some parameters, together with very strong

correlations among parameters, indicate that the full DDM fails to provide a characterization

of the data that is as clear as one would hope. More precisely, even with a large data set, sv is

estimated with little precision (at least if the magnitude of sv is as large as in the present data).

This suggests that when one is interested in the parameter estimates, such as when applying the

DDM in a cognitive-psychometric context (Batchelder, 1998), one should have little hopes of

ever getting trustworthy estimates.

When considering whether or not to estimate the across-trial variabilities, it is important

to consider the role of these parameters. The main motivation behind them is to capture the

more fine-grained aspects of the RT distributions (Ratcliff & Tuerlinckx, 2002). Consequently,

it should not be surprising that these parameters are difficult to estimate and are particularly

vulnerable to the stochastic variability in the data. The presence of strong parameter correlations

furthermore suggests that very similar (but not exactly equal) predictions can be obtained when

jointly varying some of the parameters. This parameter fungibility suggests that a particularly

large value of sv is more likely to be due to a large value of v than to be a genuine independent

effect. Models that contain highly correlated parameters are also known as sloppy models (Brown

& Sethna, 2003) a class to which we believe the full DDM belongs to.

Our general advice is twofold. When the research goal is along the lines of cognitive

psychometrics, simpler models, for example the four-parameter Wiener model (Vandekerckhove,

2014), should probably be preferred. The costs associated with a more complex model do not

appear to pay off.



ESTIMATING ACROSS-TRIAL PARAMETERS 75

sz

0�0 1�� 3�0

���� �����

0�	
 0��� 0�
1 0�
�

����

��� 3��

�
��
�

�
��
�

�
��

�
��

�
��

sν

����

sTer

����  !"# ����$%

�
��
&

�
��
�

�
�'
(

�
�&
� a

���)�

Ter

���)* +,-. /245

�
��
'
�

�
��
&
�

6789

�
�:
�

�
�:
�

z

νEasy

0.76

2
.5

3
.5

4
.5

0.69

2
.5

3
.5

νMedium

0.70

0.00 0.20 0.08 0.11 0.372 0.380 2.5 3.5 4.5 1.5 2.5

1
.5

2
.5

νHard

Figure 10: Pairs plot for results of the the Level 2 data reported by Singmann & Kellen. The

main diagonal shows the (univariate) histograms of the non-parametric bootstrap based parameter

distributions; the maximum likelihood estimate is displayed as a black triangle. The lower

triangle shows the bivariate scatterplots of parameter distributions (where each point is plotted

with 90% transparency so that larger numbers of overlapping points appear darker). The upper

triangle shows the absolute values of the correlations between parameters with larger correlations

printed in larger font.

If one nevertheless wants to estimate the across-trial variabilities (e.g., to account for

differences in the RT distribution between error responses and correct responses) one should use

bootstrap (or similar simulation-based) procedures to estimate the variability of the estimates
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obtained. In the case of real data one should complement the present non-parametric bootstrap

procedure with a parametric analog (i.e., generate synthetic data from the obtained parameter

estimates and use those data to obtain parameter estimates). If the true data-generating process

does not conform well to the postulates of the DDM, a comparison of the variability estimates

obtained from parametric and non-parametric bootstrap would allow for a fairer assessment of the

actual variability and heighten the probability of detecting problems such as the ones associated

with sz in the analysis of Level 2 data.

B.2 Voss & Lerche

B.2.1 Methods.

Overview. Data were analyzed with fast-dm 30.2 (Voss, Voss, & Lerche, 2015, cf.

also Voss & Voss, 2007, 2008). Fast-dm is an open source C program for parameter estimation

in the DDM. Originally, fast-dm fitted predicted and observed cumulative RT distributions by

minimizing the Kolmogorov-Smirnov statistic (Voss, Rothermund, & Voss, 2004). This method

proved to be very robust in the case of contaminated RT distributions (Lerche & Voss, 2016).

However, because in the present data there is no evidence for fast outliers or other forms of

contamination and because across-trial variabilities are especially difficult to estimate (Lerche

& Voss, 2017), a Maximum Likelihood (ML) method recently implemented in fast-dm was

used for the present project.

Data preparation and model specification. For the analysis, responses “left” and “right”

were recoded as 1 and 0, respectively, which are the codes for upper vs. lower thresholds in

fast-dm, and drift rates were estimated separately for each type of stimuli (i.e., “left” and

“right”). Individual data sets (Level 3) were saved into separate files. Fast-dm commands

for all analyses are presented in Table 13 (see Voss et al., 2015 for further explanations on the

handling of fast-dm). Note that fast-dm currently does not allow setting specific values for

parameters that vary between conditions. The commands for the Level 1 analysis (Table 13, left

column) result in an estimation of the six drift rates from data. We present results not only from

this analysis, but from an additional calculation that fixes also the drift rates to the correct values.
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Table 13

Fast-dm commands for Voss & Lerche’s analysis.

Level 1 Level 2 & 3

method ml method ml

precision 4 precision 4

set d 0 set d 0

set p 0 set p 0

set a 1 depends v cond stim

set zr 0.45 format TIME RESPONSE

cond stim

set t0 0.35 load *.dat

depends v cond stim log level2 3.par

format TIME RESPONSE cond stim

load L1.dat

log level1.par

However, the latter analysis cannot be performed with the published version of fast-dm, but

requires changes in the code.

The control commands first set the estimation method to maximum likelihood and set a

rather high precision for the calculation of the predicted density functions (default is precision =

3). Then, settings for the standard DDM are given (d=0 indicates that the same non-decision time

is used for both thresholds, see Voss, Voss, & Klauer, 2010, and p=0 indicates that the percentage

of guessing is set to 0, see Ratcliff, 2002). For the Level 1 analysis the parameters a, z, and Ter

are set to the true values. The depends command allows the drift to vary between conditions.

Finally, the names of data columns and of input and output files are specified.

In three further sets of estimation procedures, all analyses were repeated setting one of the

three across-trial variability parameters to zero. This allows for testing whether the model fit (i.e.,
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the log-likelihood) decreases substantially when the parameter is removed from the model.

B.2.2 Results. Fast-dm was run on a PC with an Intel i7 Processor with 2.93 GHz.

Mean calculation time was 3,909 seconds (about 1 hour) per data set. Estimated parameters are

presented in Table 14.

Estimates of across-trial variability parameters. For the Level 1 data, across-trial

variability parameters were estimated first restricting all parameters to the true values (which

required an adaptation of the code), and - subsequently -– with the published version of

fast-dm 30.2 (which required the estimation of the six drift rates). Thus, the latter approach

has more degrees of freedom, because the six drift rates are estimated. Here we only report

the mean drift rate across stimulus types for each experimental condition. As can be seen from

Table 14, estimates for the across-trial variabilities are nearly identical for both calculations. The

confidence intervals shown in the table were estimated from 200 bootstrap-samples for Level 1

and Level 2 data.

Model fit. Likelihood of model estimation was compared for full models with restricted

models, where one of the across-trial variability parameters was fixed to zero. The results, shown

in Table 2 in the online appendix, indicated that model fit decreases dramatically for all models

when the across-trial variability of non-decision times is set to zero. For the variabilities of

starting point and drift rates results are not as clear cut: In many models, the fit is not affected

strongly when removing these parameters from the model.

B.2.3 Advice. The present study confirms previous results (e.g., Lerche & Voss, 2016)

showing that especially across-trial variabilities of drift and starting point are hard to estimate.

Accuracy of estimates for across-trial variability of non-decision time is typically much larger.

Whenever these variability parameters are in the focus of interest, researchers need to use all

available tools to increase the precision of parameter estimation.

The easiest method to ensure high precision of parameter estimation in general is to

use large data sets. Large real data, however, might come along with their own problems, since

participants tend to lose motivation and attention while processing large numbers of trials, which
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Table 14

Parameter estimates and uncertainty intervals reported by Voss & Lerche.

a vEasy vMedium vHard z Ter sv sTer sz

Level 1 - Restricted Fita

Estimate 2.24 0.11 0.42

UB 2.00 0.10 0.30

LB 2.43 0.12 0.49

Level 1 - Full Fit

Estimate 3.42 2.60 1.71 2.29 0.11 0.41

UB 2.04 0.09 0.30

LB 2.53 0.11 0.51

Level 2

Estimate 0.80 3.64 3.18 2.07 0.55 0.43 1.80 0.10 0.00

UB 1.39 0.09 0.00

LB 2.42 0.11 0.29

Level 3 - µk

Estimate 0.84 4.47 3.23 1.97 0.46 0.54 1.44 0.15 0.29

Level 3 - σk

Estimate 0.34 1.22 1.24 0.84 0.09 0.03 0.60 0.02 0.18
Note. Estimate: ML estimate for Levels 1 and 2, mean ML estimate across
participants for Level 3, LB: lower bound of 95% bootstrap confidence
interval, UB: upper bound of 95% bootstrap confidence interval. Drift rate
estimates are averaged across left and right stimuli. aThe code of fast-
dm was adapted to allow the fixation of drift rates to true values in separate
conditions.
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in turn could result in an increased number of contaminated trials (contaminated means that the

internal response selection mechanisms changes from a diffusion-like mechanism to others, e.g.

guessing). Such contamination need not even result in outlier RTs, which makes it hard to detect.

A second recommendation is to use efficient estimation procedures. Here, we decided

to use a ML-estimation. However, ML results can be strongly biased when data is contaminated

(Lerche & Voss, 2016). So, it might be a safer option to use a more stable procedure (e.g., the

Kolmogorov-Smirnov distance) when real data are analyzed to avoid such biases.

Finally, one has to balance advantages and disadvantages of including across-trial

variability parameters. On the one hand, only these parameters give the model the full flexibility

to account for different patterns observed in real RT data from different tasks. Thus, these

across-trial variability parameters seem to be theoretically necessary to make the DDM plausible.

On the other hand, the across-trial variabilities are often not the focus of psychological theories,

and seem to make the model unnecessarily complex: Recently, Lerche and Voss (2016)

demonstrated that the precision of estimates for some model parameters (drift, threshold,

and non-decision time) can be increased when across-trial variabilities for drift and starting

point were not estimated, even if data were simulated with notable variability (see also van

Ravenzwaaij et al., 2017).

Appendix C Individual Contributions - χ2 Minimization

C.1 Servant & Logan

C.1.1 Methods. The model was simultaneously fit to correct and error RT distributions

(.1, .3, .5, .7, .9 quantiles) and to accuracy data using a χ2 method. Model fits were run in

FORTRAN. The χ2 method and the FORTRAN code have been fully described by Ratcliff (2002).

The χ2 statistic has the following form:

χ
2 =∑

i

N(pi−πi)
2

πi
(2)

where N is the number of observations grouped into bins bounded by RT quantiles. pi and πi are,

respectively, the observed and predicted proportions of trials in bin i, and sum to 1 across each
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pair of correct and error distributions. The summation over i extends over the 12 bins in each

experimental condition (6 bins for correct trials and 6 bins for error trials). Errors were excluded

from the χ2 computation when their number was < 10. The χ2 statistic was minimized with a

Simplex routine (Nelder & Mead, 1965). Details regarding the parameterization of Simplex

are provided in the Advice section.

We added several constraints on the model during the Simplex minimization process.

First, the (absolute) starting point z was constrained to not exceed 80% of boundary separation

a. Secondly, half the width of across-trial variability in starting point sz/2 was constrained to

not exceed 90% of the minimal distance between starting point and decision bounds. Thirdly,

across-trial variability parameters sz, sv, and sTer were constrained to remain ≥ 0. Fourhtly,

across-trial variability in drift rate was constrained to remain ≤ 3.29, the maximal value from

Matzke and Wagenmakers’ (2009) survey of parameter values estimated in empirical studies.

Finally, half the width of across-trial variability in non-decision time was constrained to not

exceed 90% of mean non-decision time Ter.

For Levels 1 and 2, measures of uncertainty for parameter estimates were obtained

using a parametric resampling procedure (bootstrap). We generated 50 samples by running

50 simulations from the model using best-fitting parameters. Each sample contained the same

number of trials per condition as the original data. The model was then fit to each of the 50

samples. We computed the 95% bootstrap confidence interval (2.5% and 97.5% quantiles) over

the 50 bootstrap parameter estimates. For Level 3, we fit the model to each individual data set,

and report the mean of parameter estimates over the 20 subjects.

C.1.2 Results. Best-fitting parameters for each Level are presented in Table 15. Plots of

observed versus predicted data are provided in the online Appendix (Figure 1). The models with

the obtained parameter settings provide a good description of the data sets.

For Levels 1 and 2, the Simplex search converged quickly. The uncertainty associated

with across-trial variability parameters is much larger for Level 2 than Level 1. In particular,

the 95% bootstrap CI for sz (Level 2) is very large (0-0.5152), which might indicate a sloppy
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Table 15

Parameter estimates and uncertainty intervals reported by Servant & Logan.

a vEasy vMedium vHard Ter z sv sTer sz

Level 1

Estimate 2.25 0.10 0.42

LB 2.11 0.10 0.33

UB 2.49 0.11 0.49

Level 2

Estimate 0.81 3.72 3.30 2.17 0.43 0.56 2.06 0.10 0.02

LB 0.78 3.25 2.81 1.81 0.42 0.54 1.52 0.07 0.00

UB 0.93 4.54 3.91 2.75 0.44 0.57 2.90 0.11 0.52

Level 3 - µk

Estimate 0.84 4.78 3.46 2.07 0.47 0.54 1.66 0.15 0.37

Level 3 - σk

Estimate 0.36 1.36 1.61 0.90 0.10 0.02 0.90 0.01 0.31
Note. Estimate: best-fitting parameter value for Levels 1 and 2, mean of best-
fitting parameter values for individual participants for Level 3. LB: lower
bound of 95% bootstrap confidence interval, UB: upper bound of 95%
bootstrap confidence interval.

spectrum of sensitivity (i.e., a flat likelihood surface). 95% bootstrap CIs associated with

parameter v (Level 2) also appear relatively wide, which might suggest a trade-off between v and

sv.

For Level 3, the Simplex search converged generally quickly. Constraints on

across-trial variability parameters were critical to keep these parameters in a reasonable range.

Without these constraints, sz and sv often went negative. In addition, sv sometimes reached very

large values. The best-fitting sv was equal to the upper bound (3.29) for subjects 3 and 12.

C.1.3 Advice. The Simplex search in the Fortran code is implemented as

follows. One set of starting values is initially entered. We used mean values from Matzke and
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Wagenmakers’ (2009) survey of parameter values estimated in empirical studies (with s = 1, a =

1.25, absolute z = 0.63, Ter = .435, vEasy = 2.23,vMedium = 2.23 , vHard = 2.23, sTer = .183, sv =

1.33, and absolute sz = .37). Simplex is then run several times, using the best-fitting parameters

from fit N− 1 as the starting values for fit N. The process is repeated until the parameters do not

change from one iteration to the next by a small amount. We observed, however, that different

starting values yielded slightly different best-fitting parameters. For example, we ran additional

fits for Level 3 using vEasy = 3.5, vMedium = 2.5, vHard = 1.5. The best-fitting parameters were

µa = 0.85, µvEasy = 5.16, µvMedium = 3.71, µvHard = 2.21, µTer = 0.46, µz abs = 0.47, µsv = 0.37,

µsTer
= 2.06, µsz abs = 0.15. Here zabs is the absolute starting point and szabs is the corresponding

across-trial variability.

Main variations between these additional fits and those reported in Table 15 concern v, sv

and sz. These variations might be explained by (i) a trade-off between v and sv and (ii) a relatively

flat likelihood surface associated with parameter sz.10 To further investigate (i), we computed the

correlation between v and sv across our 50 bootstrap parameter estimates from Level 2 for each

difficulty condition. These correlations were very high (easy: r = .85; medium: r = .85; difficult:

r = .86), demonstrating a trade-off between v and sv (larger v is associated with larger sv; see

online Appendix, Figure 2). Parameters that are not well recovered should be fixed or combined

(e.g., see our recent parameter recovery work on time-varying DDMs; White et al., 2017).

Ratcliff and Childers (2015) recently introduced some refinements of the χ2 method. In

particular, the median RT of errors is used if the number of errors is lower than the number of

quantiles in a given condition. We instead excluded errors from the χ2 computation when their

number was < 10. Using the Ratcliff and Childers refinement in Level 3 (where a few data sets

are associated with a small number of errors) might improve parameter recovery.

10Alternatively, variations between additional fits and Table 15 may suggest a local minimum problem. However,

most of the parameter values are very close, and it seems that Simplex ended up in the same region. In addition,

χ2 values associated with parameters in Tables 15 and the additional fits were close (Table 15: mean χ2 = 59.6;

additional fits: mean χ2 = 61.9).
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C.2 Starns

C.2.1 Methods. We performed fits using the χ2 method described in Ratcliff and

Tuerlinckx (2002) using FORTRAN programs written by Roger Ratcliff. These programs find

the parameter values that minimize χ2 using the Simplex algorithm. We did not remove

any trials before fitting. We did not have a method for providing interval measurements on

parameters from a single participant’s data set, because we have never done this in a paper. If

we ever actually have to do single-participant inference for one of our projects, we will develop

something more sophisticated like putting together an MCMC chain to estimate posterior

distributions for parameter values. However, for the intervals reported for Levels 1 and 2, we

used a quick-and-dirty method to get a feel for how tightly the parameters were constrained

by data. We fixed the parameter at a value above or below its best-fitting value, reran the fit

allowing the other parameters to be optimized, and found the point at which the likelihood with

the fixed value was 10 times lower than the likelihood with the optimal value. If the data do not

place much constraint on a parameter value, then we should be able to move it over a wide range

without substantially affecting the fit (producing a wide interval).

For the Level 3 data, we found the best-fitting parameters for each participant and

simply calculated standard 95% confidence intervals using these estimates. This is not an

ideal procedure, as it does not acknowledge uncertainty in parameter estimates for individual

participants. Nevertheless, this simple technique does a good job in parameter recovery

simulations (at least for the main model parameters; Ratcliff & Tuerlinckx, 2002).

C.2.2 Results.

Level 1. The best-fitting parameter estimates are reported in Table 16. With the main

model parameters fixed, there was tight constraint on these estimates; that is, the fit deteriorated

quickly as we moved the parameters away from their optimal values.

Level 2. For the Level 2 data we estimated separate drift rates for left and right stimuli, in

case the drift rates for left and right stimuli were not mirrored (same absolute value with different

signs), but it appears that they were based on the fits. The values reported here are the mean
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Table 16

Parameter estimates and uncertainty intervals reported by Starns.

a vEasy vMedium vHard Ter z sv sTer sz

Level 1

Estimate 2.25 0.10 0.42

LB 2.02 0.09 0.30

UB 2.51 0.12 0.51

Level 2

Estimate 0.80 3.75 3.35 2.15 0.43 0.56 2.05 0.10 0.01

LB 1.54 0.08 0.00

UB 3.10 0.11 0.45

Level 3 - µk

Estimate 0.83 4.84 3.47 2.11 0.45 0.54 1.89 0.15 0.32

LB 0.67 4.27 2.90 1.69 0.43 0.53 1.59 0.15 0.27

UB 1.00 5.37 4.00 2.59 0.52 0.55 2.18 0.16 0.37
Note. Estimate: best-fitting parameter value for Levels 1 and 2, mean of
best-fitting parameter values for individual participants for Level 3. LB:
lower parameter value at which the likelihood was 10 times lower than the
likelihood under the best fitting value for Levels 1 and 2, lower bound of
95% confidence interval for Level 3, UB: upper parameter value at which
the likelihood was 10 times lower than the likelihood under the best fitting
value for Levels 1 and 2, upper bound of 95% confidence interval for Level 3.
Drift rate estimates are averaged across left and right stimuli.
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absolute drift rates across stimuli. In our best-fitting model, χ2 was 55.6. The corresponding

parameter estimates are reported in Table 16. Estimating all of the parameters dramatically

reduced the constraint on sz and sv. In other words, these parameters had to be moved far from

their optimal values to get a substantial change in fit (i.e., a likelihood 10 times lower than the

optimal likelihood). The constraint on sTer remained very similar to the Level 1 fit.

Level 3. The same model described for Level 2 was fit to each participant. Across

data sets, χ2 values ranged from 35 to 79.7 with a mean of 56.9. The corresponding parameter

estimates are reported in Table 16.

C.2.3 Advice. We would not advise using standard programs if a researcher wants

to make conclusions about variability in starting point or non-decision time. No one really

seriously endorses the assumed uniform distributions for these parameters; researchers have

largely ignored this simplification because it does not seem to affect the types of conclusions they

want to make (e.g., detecting effects on speed/accuracy trade-off, information quality, or bias).

We do not take estimates of starting point variability from any fit that we run that seriously.

We have, however, been interested in detecting differences in drift rate variability in

memory research. Although there is low constraint on this parameter, parameter recovery

simulations suggest that the model can detect differences in this parameter between conditions

with standard experiment designs (Starns & Ratcliff, 2014). Also, validation studies show that the

model can detect manipulations of evidence variability in fits to empirical data (Starns, 2014). So

we have more confidence in the sv estimates, at least in terms of differences across conditions.

In fitting Level 2, we noticed that sz and sv strongly covary when the average drift rate

is also freely estimated. That is, when we would increase sv, say, then sz would also increase

and the average drift rate would get farther from zero. This makes sense in hindsight, given

that sz and sv have opposite effects on the relation between correct and error RTs (increasing sz

promotes fast errors and sv promotes slow errors; Ratcliff & McKoon, 2008). So a lot of the noise

in estimating sz and sv comes because they trade off, and the estimates for both would probably

get much better if there was a way to place additional constraint on one of them (we are not sure
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how this could be achieved). This also makes us more confident in conclusions about changes

in sv across conditions that are constrained to have the same sz than in conclusions about the

absolute value of sv within a single condition.



ESTIMATING ACROSS-TRIAL PARAMETERS 88

References

Achen, C. H. (2005). Two-step hierarchical estimation: Beyond regression analysis. Political

Analysis, 13(4), 447–456. doi:http://doi.org/10.1093/pan/mpi033

Aho, K., Derryberry, D., & Peterson, T. (2014). Model selection for ecologists: The worldviews

of AIC and BIC. Ecology, 95(3), 631–636. doi:10.1890/13-1452.1

Balota, D. a., Yap, M. J., Cortese, M. J., Hutchison, K. a., Kessler, B., Loftis, B., . . . Treiman, R.

(2007). The English lexicon project. Behavior Research Methods, 39(3), 445–459. doi:10.

3758/BF03193014

Batchelder, W. H. (1998). Multinomial processing tree models and psychological assessment.

Psychological Assessment, 10(4), 331–344. doi:10.1037/1040-3590.10.4.331

Brooks, S. P. & Gelman, A. (1998). General methods for monitoring convergence of iterative

simulations. Journal of Computational and Graphical Statistics, 7, 434–455.

Brown, K. S. & Sethna, J. P. (2003). Statistical mechanical approaches to models with many

poorly known parameters. Physical Review E, 68(2), 021904. doi:10 . 1103 / PhysRevE .

68.021904

Brown, S. D. & Heathcote, A. (2008). The simplest complete model of choice response time:

Linear ballistic accumulation. Cognitive Psychology, 57(3), 153–178. doi:10 . 1016 / j .

cogpsych.2007.12.002

Burnham, K. P. & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A

Practical Information-Theoretic Approach. New York: Springer.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., . . . Riddell, A.

(2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1).

doi:10.18637/jss.v076.i01

Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A., & Liu, J. (2013). A non-degenerate

estimator for hierarchical variance parameters via penalized likelihood estimation.

Psychometrika, 78(4), 685–709. doi:10.1007/s11336-013-9328-2



ESTIMATING ACROSS-TRIAL PARAMETERS 89

Cohen, A. L., Sanborn, A. N., & Shiffrin, R. M. (2008). Model evaluation using grouped or

individual data. Psychonomic Bulletin and Review, 15(4), 692–712. doi:10 . 3758 / PBR .

15.4.692

Efron, B. & Morris, C. (1977). Stein’s paradox in statistics. Scientific American, 236(5),

119–127.

Efron, B. & Tibshirani, R. (1994). An introduction to the bootstrap. New York: Chapman & Hall.

Forstmann, B. U., Ratcliff, R., & Wagenmakers, E. (2016). Sequential sampling models in

cognitive neuroscience: Advantages, applications, and extensions. Annual Review of

Psychology, 67, 641–666. doi:10.1146/annurev-psych-122414-033645

Frank, M. J., Gagne, C., Nyhus, E., Masters, S., Wiecki, T. V., Cavanagh, J. F., & Badre,

D. (2015). fMRI and EEG predictors of dynamic decision parameters during human

reinforcement learning. Journal of Neuroscience, 35(2), 485–494. doi:https : / / doi . org /

10.1523/JNEUROSCI.2036-14.2015

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013).

Bayesian data analysis (3rd ed.). London: Chapman and Hall/ CRC.

Gelman, A. & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences.

Statistical Science, 7(4), 457–511. doi:10.1214/ss/1177011136

Gelman, A. (2006). Prior distribution for variance parameters in hierarchical models. Bayesian

Analysis, 1(3), 515–533. doi:10.1214/06-BA117A

Gelman, A. & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models.

Cambridge: Cambridge University Press.

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating

posterior moments. In J. M. Bernado, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.),

Bayesian statistics 4 (pp. 169–193). Oxford, UK.: Clarendon Press.

Hawkins, G., Mittner, M., Forstmann, B., & Heathcote, A. (2017). On the efficiency of

neurally-informed cognitive models to identify latent cognitive states. Journal of

Mathematical Psychology, 76, 142–155.



ESTIMATING ACROSS-TRIAL PARAMETERS 90

Heathcote, A., Lin, Y., & Gretton, M. B. (2016). DMC: Dynamic Models of Choice [Computer

software]. Retrieved from osf.io/5yeh4

Heathcote, A., Lin, Y.-S., Reynolds, A., Strickland, L., Gretton, M., & Matzke, D. (in press).

Dynamic models of choice. Behavior Research Methods.

Heathcote, A. & Love, J. (2012). Linear deterministic accumulator models of simple choice.

Frontiers in Psychology, 3. doi:http://doi.org/10.3389/fpsyg.2012.00292

Jeffreys, H. (1961). Theory of probability. Oxford: Oxford University Press.

Kaufman, L. & Gay, D. (2003). The PORT library - optimization. Murray Hill, NJ: AT&T Bell

Laboratories.

Kruschke, J. K. (2011). Doing Bayesian data analysis. Burlington, MA: Academic Press.
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