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Abstract. When people repeatedly practice the same cognitive task, their response times (RT) invariably decrease. Dutilh, Vandekerckhove,
Tuerlinckx, and Wagenmakers (2009) argued that the traditional focus on how mean RT decreases with practice offers limited insight; their
diffusion model analysis showed that the effect of practice is multifaceted, involving an increase in rate of information processing, a decrease in
response caution, adjusted response bias, and, unexpectedly, a strong decrease in nondecision time. In this study, we aim to further disentangle
these effects into stimulus-specific and task-related components. The data of a transfer experiment, in which repeatedly presented sets and new
sets of stimuli were alternated, show that the practice effects on both speed of information processing and time needed for peripheral processing
are partly task-related and partly stimulus-specific. The effects on response caution and response bias appear to be task-related. This diffusion
model decomposition provides a perspective on practice that is more detailed and more informative than the traditional analysis of mean RT.
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When people repeatedly perform the same task, their
performance becomes fast, accurate, and relatively effort-
less. For example, you are able to read this text quickly,
virtually without errors, and, hopefully, without investing
too much effort. The ease with which you just read the pre-
vious sentences is due to your extensive practice with read-
ing in general; however, there is a chance – admittedly
remote – that your ease of reading was enhanced because
you were familiar with an article that started with the very
same two sentences (i.e., Dutilh Vandekerckhove,
Tuerlinckx, & Wagenmakers, 2009). This example high-
lights the distinction between learning that is related to the
task (e.g., the skill of reading in general) and learning that
is specific to the stimulus (e.g., reading particular sentences).
This distinction is the focus of this article.

Research on skill acquisition and practice has a long his-
tory of theorizing and experimenting and involves many dif-
ferent skills in many different domains (e.g., Crossman,
1959; Logan, 1992; Pirolli & Anderson, 1985). Researchers
in the field of cognitive skill acquisition have focused
mainly on the practice-induced speed-up in mean response
time (MRT). This speed-up is typically largest at the initial
stage of training and diminishes as practice progresses. The
functional form of the speed-up has been the topic of a fierce
academic debate. The primary candidate to account for
the shape of the speed-up is the power function (i.e., the
famous ‘‘power law of practice,’’ Logan, 1990; Newell &
Rosenbloom, 1981, p. 3). This power law speed-up is
consistent with several theories of skill acquisition, most
notably Logan’s instance theory (Logan, 1988, 2002).

However, other researchers have argued that evidence in
favor of the power law might be an artifact of averaging
over many different learning curves, and that the true under-
lying curve is characterized by an exponential speed-up
(Heathcote, Brown, & Mewhort, 2000).

Although some theories take into account the entire dis-
tribution of response time (RT), the large majority of exper-
imental studies consider only MRT. In recent work we
showed that this selective focus on MRT, a focus that
ignores the distributional form of RT and its interdependence
with accuracy, offers a deceivingly limited view on the
effects of practice (Dutilh et al., 2009). By applying
Ratcliff’s diffusion model to the data of a 25-block lexical
decision task, we were able to decompose the effect of
practice into changes in several underlying psychological
processes that together determine observed performance.
Our main conclusion was that the effect of practice on
performance is multifaceted: Not only did practice increase
the speed of information processing, as expected, but this
increase was accompanied by a decrease in response caution
and a decrease in the time needed for nondecisional
processes. Since the study did not feature transfer blocks
with new stimuli, we were not able to conclude whether
the practice effects were caused by an increased familiarity
with the stimuli, an increased familiarity with the task, or a
combination of both.

In this article, we aim to use the diffusion model again to
decompose the effects of practice, but this time we also
differentiate task-related from stimulus-specific factors
(e.g., Ahissar & Hochstein, 1993; Forbach, Stanners, &
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Hochhaus, 1974; Logan, 1990). In order to do so, we
designed an interleaved transfer experiment in which partic-
ipants responded to alternating blocks of new and repeated
stimuli.

The outline of this paper is as follows. We first introduce
Ratcliff’s diffusion model. Next we summarize the results of
our previous study and emphasize the importance of unrav-
eling task-related and stimulus-specific effects of practice.
Then we describe our current transfer experiment and dis-
cuss its results both descriptively and in terms of diffusion
model parameters.

The Diffusion Model

The diffusion model provides a formal, comprehensive, and
detailed account of performance on speeded two-choice
tasks (e.g., Ratcliff, 1978; Ratcliff & Tuerlinckx, 2002;
Voss, Rothermund, & Voss, 2004; for recent reviews see
Ratcliff & McKoon, 2008; Wagenmakers, 2009). The model
accounts not just for MRT but captures the entire distribu-
tion of correct and error RTs as well as percentage correct.
One of the major strengths of the diffusion model is that
its main parameters can be interpreted in terms of latent psy-
chological processes that drive performance.

Here we describe the diffusion model as it applies to the
lexical decision task, where a participant has to decide
quickly whether a presented letter string is a word (e.g.,
party) or a nonword (e.g., drapa). The core of the model
is the Wiener diffusion process that describes how the rela-
tive evidence for one of the two response alternatives accu-
mulates over time. The meandering lines in Figure 1
illustrate the continuous and noisy accumulation of evidence
for a word response over a nonword response, when a word
is presented. When the amount of diagnostic evidence for
one of the response options reaches a predetermined
response threshold (i.e., one of the horizontal boundaries
in Figure 1), the corresponding response is initiated. The
dark line in Figure 1 shows how the noise inherent in the
accumulation process can sometimes cause the process to
end up at the wrong (i.e., nonword) response boundary.

The Diffusion Model Parameters

As in Dutilh et al. (2009), the version of the diffusion
model that we apply in this article has seven parameters.
These are:

1. Mean drift rate (v). Drift rate quantifies the deterministic
component in the information-accumulation process.
This means that when the absolute value of drift rate is
high, decisions are fast and accurate; thus, v indexes task
difficulty or subject ability.

2. Across-trial variability in drift rate (g). This parameter
reflects the fact that drift rate may fluctuate from one trial
to the next, according to a normal distribution with mean
v and standard deviation g. The parameter g allows the
diffusion model to account for data in which error

responses are systematically slower than correct
responses (Ratcliff, 1978).

3. Boundary separation (a). Boundary separation quantifies
response caution and modulates the speed-accuracy
trade-off: At the price of an increase in RT, participants
can decrease their error rate by widening the boundary
separation (e.g., Forstmann et al., 2008).

4. Mean starting point (z). Starting point reflects the a
priori bias of a participant for one or the other response.
This parameter is usually manipulated via payoff or pro-
portion manipulations (Edwards, 1965; Wagenmakers,
Ratcliff, Gomez, & McKoon, 2008; but see Diederich
& Busemeyer, 2006).

5. Across-trial variability in starting point (sz). This param-
eter reflects the fact that starting point may fluctuate from
one trial to the next, according to a uniform distribution
with mean z and range sz. The parameter sz also allows
the diffusion model to account for data in which error
responses are systematically faster than correct responses.

6. Mean of the nondecision component of processing (Ter).
This parameter encompasses the time spent on common
processes, that is, processes executed irrespective of the
decision process. The diffusion model assumes that the
observed RT is the sum of the nondecision component
and the decision component (Luce, 1986):
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Figure 1. The diffusion model as it applies to the lexical
decision task. Aword stimulus is presented (not shown) and
two example sample paths represent the accumulation of
evidence which results in one correct response (light line)
and one error response (dark line). Repeated application of
the diffusion process yields histograms of both correct
responses (upper histogram) and incorrect responses (lower
histogram). As is evident from the histograms, the correct,
upper word boundary is reached more often than the
incorrect, lower nonword boundary. The total RTconsists of
the sum of a decision component, modeled by the noisy
accumulation of evidence, and a nondecision component
that represents the time needed for processes such as
stimulus encoding and response execution.
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RT ¼ DT þ Ter; ð1Þ

whereDT denotes decision time. Therefore, nondecision
time Ter does not affect response choice and acts solely to
shift the entire RT distribution.

7. Across-trial variability in the nondecision component of
processing (st). This parameter reflects the fact that non-
decision time may fluctuate from one trial to the next,
according to a uniform distribution with mean Ter and
range st. The parameter st also allows the model to cap-
ture RT distributions that show a relatively shallow rise
in the leading edge.

Many experiments attest to the validity and specificity of
the parameters of the diffusion model. For instance, Voss
et al. (2004), Ratcliff and Rouder (1998), and Wagenmakers
et al. (2008) show that accuracy instructions increase bound-
ary separation, easier stimuli have higher drift rates, and
unequal reward rates or presentation proportions are associ-
ated with changes in starting point. Moreover, simulation
studies have shown that the parameters of the diffusion
model are well identified (e.g., Ratcliff & Tuerlinckx,
2002; Wagenmakers, Van der Maas, & Molenaar, 2005).

Finally, Ratcliff (2002) has shown that the model fits real
data but fails to fit fake but plausible data. These and other
studies justify the psychological interpretation of the diffu-
sion model parameters in terms of underlying cognitive pro-
cesses and concepts.

A Diffusion Model Account of Practice

In Dutilh et al. (2009), participants completed a 10,000-trial
lexical decision task that consisted of 25 blocks administered
infive sessions onfive consecutivedays. Eachblock consisted
of the same set of 200 unique words and 200 unique non-
words. Contrary to the standard interpretation of the practice
effect as a unitary phenomenon, a diffusion model decompo-
sition of the data suggested that the practice effect was multi-
faceted: Not only did practice increase the participants’ rate of
information processing v, but it also caused a decrease in
response caution a. This combination of effects allowed
participants to speedupwithpractice,while retaining the same
level of accuracy. Furthermore, practice also resulted in a
change in the a priori preference z for the ‘‘word’’ versus
‘‘nonword’’ response; over the course of the experiment, the
slight a priori preference for ‘‘word’’ responses shifted to a
slight a priori preference for ‘‘nonword’’ responses. A final
and unexpected effect of practice was to decrease the nonde-
cision time Ter. This nondecision component decreased by
about 100 ms over the course of the entire experiment, a
decrease that accounted for about 40% of the total practice-
induced change in MRT.

Task-Related Versus Stimulus-Specific
Effects

One important question not addressed in Dutilh et al. (2009)
is the extent to which the practice-induced changes in the

diffusion model parameters are task-related or stimulus-spe-
cific. Because theDutilh et al. (2009) study did not feature any
transfer blocks consisting of new stimuli, it is impossible to
claim with certainty that, say, the practice-induced decrease
in nondecision time Ter is exclusively due to an increase in
familiaritywith the stimuli; instead, an alternative explanation
is that the effect on Ter is due to an increase in familiarity with
the task (i.e., the experimental setup including the button
boxes, the computer screen, and the pace at which the trials
were presented). This distinction between task-related and
stimulus-specific learning is also important in light of existing
theories of practice, as we explain below.

Most theories of skill acquisition and learning assume
that practice enhances the association between individual
stimuli and the appropriate response category (e.g., Logan’s
instance theory of automatization, Logan, 1988; its succes-
sor, the instance theory of attention and memory, Logan,
2002; and Rickard’s component power laws model, Rickard,
1999). This assumption maps naturally onto the increase in
drift rate that we found with practice (e.g., Logan, 2002, p.
391). For our current study, it is important to note that this
stimulus-specific explanation of the practice effect on drift
rate implies that it does not transfer to new stimuli.

Furthermore, Logan (1992) suggests that ‘‘intercept pro-
cesses,’’ such as perceptual registration and response execu-
tion, might contribute to the practice-induced speed-up in
MRT. This suggestion is supported by the practice-induced
decrease in Ter reported in Dutilh et al. (2009). Although this
has not been explicitly stated, Logan’s ‘‘intercept processes’’
(i.e.,Ter in the diffusionmodel) aremost easily conceivedof as
task-related rather than stimulus-specific. Therefore, we
expected the practice effect on Ter to transfer to new stimuli
without loss.

In order to assess the relative contribution of task-related
versus stimulus-specific learning, we conducted a new exper-
iment in which transfer blocks with unique stimuli were pre-
sented in alternation with a single block of repeated stimuli.

Method

Participants

Eight native speakers of Dutch each participated for course
credit on four consecutive days in sessions that took approx-
imately 1 hr.

Materials

We composed 11 lists of 200 unique words and 200 unique
nonwords. The words were selected from the Subtlex data-
base (Brysbaert & New, 2009). The average frequency per
million of the 22,000 words was 1.23 (SD = 0.81). Each list
consisted of 40 four-letter words (mean frequency = 1.10,
SD = 0.83), 80 five-letter words (frequency = 0.99, SD =
0.80), and 80 six-letter words (frequency = 1.54, SD =
0.69). The 22,000 nonwords were created using the
WUGGY program (Keuleers & Brysbaert, 2010), which
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constructed pronounceable nonwords by replacing one letter
in an existing Dutch word, vowel by vowels, consonants by
consonants. The words that served as the basis for construct-
ing the nonwords were again selected from the Subtlex data-
base but none of them were also present in the word lists. In
similar fashion a set of 15 words and 15 nonwords was cre-
ated to serve as a practice list.

Design

In the experimental procedure, we distinguish 10 stimulus
lists that are each presented once (labeled A through J)

and one stimulus list that is presented repeatedly (labeled
R). The trials were presented in blocks, each of which
contained one complete stimulus list that was shuffled
before presentation. Blocks from stimuli lists R and A
through J were presented as follows: A R B R C R D R
E R F R G R H R I R J R, thus alternating blocks containing
new stimuli, presented only once, with blocks containing the
repeatedly presented stimulus list.

The blocks were distributed over four sessions. The first
session started with the presentation of the practice list and
featured four experimental blocks. The next two sessions
each featured five blocks and the final session featured six
blocks.
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Figure 2. Practice-induced changes in RT distributions (separately for word and nonword stimuli, and for correct and
error responses).
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Procedure

Stimuli were presented on a 17-inch CRT screen about
40 cm from the participant, using the Presentation software
for Windows (version 10.3). Letters were presented in low-
ercase font, 6 mm in height, in white on a black back-
ground. Responses were registered using a two-button
response device attached to the computer’s parallel port to
achieve maximum timing accuracy. The experimenter was
in the same room as the participants for the entire duration
of the experiment.

The stimuli remained on the screen until a response was
made. Feedback and instruction to participants promoted
accurate but fast responding: responses slower than 2,000
ms were followed by the message ‘‘TE LANGZAAM’’
(i.e., ‘‘too slow’’), and responses faster than 200 ms were
followed by the message ‘‘TE SNEL’’ (i.e., ‘‘too fast’’). Cor-
rect responses within the 200–2,000 ms window triggered
no feedback at all, whereas error responses were followed
by the message ‘‘FOUT’’ (i.e., ‘‘incorrect’’). The duration
of the feedback was 1,200 ms. Each trial started with a
blank screen that was presented for 250 ms.

Results

Preliminary inspection of the data revealed that one partici-
pant behaved erratically throughout the experiment, with
accuracy oscillating between 83% and 94%, and an anoma-
lous but substantial increase in mean RT with practice. In
addition, this participant’s mean RT showed a 250 ms shift
upwards between the third and fourth session. Therefore, we
omit this participant’s data here. A plot of the data from this
anomalous participant can be found in the online appendix
available on the first author’s website. This website also con-
tains the raw data of all participants. Below, we first present
the descriptive results and next present the results from our
diffusion model decomposition.

Outlier Removal

Before analyzing the data, we determined lower and upper
bounds to exclude outlier RTs. Visual inspection revealed
that 250 ms and 2,000 ms were reasonable cut-offs for fast
and slow outliers, respectively. Out of all 56,000 responses
in the entire experiment, only 33 responses were excluded as
slow outliers and 20 were excluded as fast outliers.

Descriptive Results

Figure 2 shows the RT and accuracy data averaged over par-
ticipants. The left and right columns of panels represent the

responses to word stimuli and nonword stimuli, respectively.
The upper four panels show for each practice block the RT
distribution summarized by the .1, .3, .5, .7, and .9 quantiles,
as averaged over participants. The upper two RT panels con-
tain correct RTs, and the lower two RT panels contain error
RTs. In each panel, the white symbols show the data of the
repeated stimulus list R, whereas the black symbols show
the data of the new lists that were only presented once. Note
that the first repeated block is colored black, since at the first
presentation, the stimuli in this block were never seen in the
experiment before. The 95% confidence intervals are based
on the Participant · Practice block interaction error term in a
within-subjects ANOVA.1 As shown in Loftus and Masson
(1994), these confidence intervals can be used to infer the
statistical significance of a within-subjects effect, in this
case, the effect of practice.

As expected, both mean and spread of the RT distribu-
tions decrease with practice. In fact, the entire RT distribu-
tion – from the leading edge to the tail – decreases with
practice, for both words and nonwords, and for correct
and error responses. This general effect is present for the
repeated blocks and, to a lesser extent, also for the blocks
containing new stimuli, from now on referred to as transfer
blocks.

The bottom left and bottom right panels show the aver-
age mean accuracy over participants for words and non-
words, respectively. For word stimuli, practice slightly
increases accuracy for the repeated block and slightly
decreases accuracy for the transfer blocks. For nonword
stimuli, practice has little effect on accuracy.

Diffusion Model Analyses

In order to obtain insight into the processes that underlie the
data patterns described above, we fitted the diffusion model
to the data. We chose to fit the model using the chi-square
method, one of the methods in the freely available DMAT
package in Matlab (Vandekerckhove & Tuerlinckx, 2007,
2008).2

As in Dutilh et al. (2009), we did not restrict the param-
eters over participants or blocks, that is, every Participant ·
Block cell was treated as an independent condition, in which
all seven parameters of the diffusion model were estimated
separately. Furthermore, we allowed words and nonwords to
have different drift rates v and different variabilities of drift
rate g. Starting point z0 was modeled as a fraction of bound-
ary separation a, that is, as relative bias B. This method of
analysis is consistent with its exploratory nature; as yet, little
is known about the functional form by which the diffusion
model parameters may change with practice – in fact, little
is known about the extent to which the diffusion model
parameters change at all.

Figure 3 shows the most important parameters of the dif-
fusion model – drift rate v, boundary separation a, response

1 ANOVAs were performed separately for new and repeated blocks, and for word and nonword stimuli.
2 Our preferred method of analysis – Bayesian parameter estimation – was plagued by numerical problems causing slow sampling and

slow convergence.
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bias B, and nondecision time Ter along with variability in
nondecision time, st – as they change with practice. In each
panel the black lines represent the parameter estimates for
the transfer blocks. The white lines represent the parameter
estimates for repeatedly presented blocks. Again, the first re-
peated block is colored black, since this is its first presenta-
tion. The parameter estimates are averaged over participants.
As in Figure 2, the 95% confidence intervals are based on
the within-subjects error term in a repeated measures
ANOVA conducted on the new and repeated blocks sepa-
rately. We discuss the parameters in turn below.

We used Bayesian linear regression to determine statisti-
cally whether the diffusion model parameters were affected
by practice and whether this practice effect depended on the
repeated presentation of stimuli (Gelman & Hill, 2007). Spe-
cifically, we conducted regression analyses in which each
diffusion model parameter served as criterion. The predic-
tors in these regression analyses were practice block number
and a binary variable indicating whether the block contained
new or repeated stimuli. The resultant posterior distributions
for the regression weights reflect the uncertainty in their
estimate and allow one to calculate the probability that a
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Figure 3. Practice-induced changes in the five most important parameters from the diffusion model. All R blocks (white)
contain the same stimuli, whereas the A–J blocks (black) are transfer blocks that contain unique stimulus sets. See text for
details.
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regression weight is larger than 0 (i.e., the mass of the pos-
terior distribution to the right of 0). When this probability for
the interaction term was smaller than .95 we excluded that
term and interpreted the regression model without the
interaction.

Diffusion Model Inference: Drift Rate

The upper two panels of Figure 3 show the effect of practice
on drift rate v. The left and right panels show drift rates for
word and nonword stimuli, respectively. Drift rate clearly in-
creases for repeatedly presented word stimuli. This increase
is strongest over the first five blocks and levels off later in
practice. For new word stimuli, however, drift rate appears
to be more or less stable. This interaction between practice
and repeated presentation is confirmed by a regression
weight (b) of the interaction that is greater than 0,
Pr(b > 0) � 1. For nonword stimuli, drift rates appear to in-
crease with practice, no matter whether the stimuli were pre-
sented only once or repeatedly (the main practice effect’s b
is greater than 0, Pr(b > 0) � 1). Note, however, that the
between-subjects variance is rather large for the repeated
nonwords, as expressed by the larger confidence intervals.

Diffusion Model Inference: Boundary Separation

The middle panel of the left column of Figure 3 shows the
practice effect on boundary separation a. As in the Dutilh
et al. (2009) study, we find that the increase in drift rate de-
scribed above is accompanied by a clear decrease in re-
sponse caution that persists over the entire experiment,
Pr(b > 0) � 1. The combination of increased drift rate
and lowered response caution explains how participants be-
came faster while retaining more or less constant accuracy.
Note that the setting of response caution appears indepen-
dent of the type of stimuli, either new or repeated.

Diffusion Model Inference: Response Bias

The middle panel of the right column of Figure 3 shows the
practice effect on response bias B. For repeated and transfer
blocks, response bias does not change systematically with
practice. On average, participants display a slight a priori
preference for the ‘‘word’’ over the ‘‘nonword’’ response.

Diffusion Model Inference: Nondecision Time

The lower left panel of Figure 3 shows the practice effect on
nondecision time Ter. For both repeated and new stimuli,
nondecision time decreases over the entire experiment. Spe-
cifically, the average decrease in nondecision time is about
50 ms, which is about 20% of the total practice-induced
decrease in RT. Parameter Ter decreases more strongly for
repeated stimuli than for new stimuli (the interaction’s b is
greater than 0, Pr(b > 0) � 1).

Diffusion Model Inference: Variability Parameters

The lower right panel of Figure 3 shows how variability in
nondecision time st decreases with practice. We found that
this effect is more pronounced for repeated than for unique
stimuli (interaction’s b is greater than 0, Pr(b > 0) � 1).
Figures for the two remaining variability parameters of the
diffusion model (i.e., variability in drift rate g for words
and nonwords and sz) are omitted here but can be found
on the first author’s website. Variability in drift rate g,
estimated for words and nonwords separately, does not
change systematically with practice. Variability in bias (sz)
does appear to decrease systematically with practice,
Pr(b > 0) = 0.90.

Discussion

In this study, we used Ratcliff’s diffusion model to disentan-
gle the effects of practice into their task-related and stimulus-
specific components, components that were confounded in
the design by Dutilh et al. (2009). Here we conducted a
transfer experiment in which blocks of new stimuli alter-
nated with blocks of repeatedly studied stimuli. In this trans-
fer experiment, stimulus-specific learning is indicated when
performance on repeated stimuli benefits from practice but
performance on new stimuli does not. In contrast, task-re-
lated learning is indicated when performance on repeated
stimuli benefits from practice just as much as performance
on new stimuli.

The descriptive results showed that practice benefits per-
formance on both repeatedly presented and new stimuli.
With practice, the entire RT distribution shrinks and the
leading edge shifts downwards; this occurs for both new
and repeated stimuli, but more so for repeated stimuli.
Effects on accuracy were small and only present for word
stimuli.

In terms of the diffusion model parameters, we found
that nonword drift rate benefits from practice independently
of the stimuli presented whereas word drift rate benefits for
repeated stimuli only. This result suggests that the task of
deciding that a letter string is a nonword is a skill that
improves with practice. On the other hand, recognizing a let-
ter string as an existing word is a skill that has been devel-
oped before the experiment but can still benefit from
increased stimulus familiarity. This result implies that the
practice-induced increase in drift rate reported in Dutilh
et al. (2009) and Ratcliff, Thapar, and McKoon (2006)
might be partly stimulus-specific and partly task-related.

Next, we found that response caution decreased with
practice at an equal rate for both new and repeated stimuli.
This general decrease in response caution in combination
with increasing drift rates explains why accuracy remains
stable with decreasing RT. It also explains why responses
on new word stimuli, for which drift rate remained stable,
became less accurate with practice.

Furthermore, nondecision time Ter decreased with prac-
tice, for both repeated and transfer blocks. This implies that
the practice effect on nondecision time is partly task-related,
supporting Logan’s idea of a speed-up in ‘‘intercept
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processes’’ such as perceptual registration and response exe-
cution. However, the decrease of Terwas stronger for repeated
stimuli than for uniquely presented stimuli. This suggests that
some perceptual processes might benefit from word familiar-
ity. Further study is needed to clarify how this benefit of famil-
iarity can occur without a concomitant increase in accuracy
(remember that Ter does not affect accuracy).

In sum, the findings reported here replicate those from
Dutilh et al. (2009): practice is a multifaceted phenomenon
that involves changes in speed of information processing, re-
sponse caution, and nondecision processing. The experi-
mental design of the current study allowed us to further
decompose these effects into task-related and stimulus-spe-
cific effects. Our analysis showed that effects on drift rate
and nondecision time are partly task-related and partly stim-
ulus-specific, whereas the effects on response caution and
response bias are mostly task-related. In general, we con-
clude that the model-based decomposition of practice brings
insights much deeper than those provided by a standard
analysis of mean RT.
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