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Common methods for analysing response time (RT) tasks, frequently used across different disciplines
of psychology, suffer from a number of limitations such as the failure to directly measure the
underlying latent processes of interest and the inability to take into account the uncertainty associated
with each individual’s point estimate of performance. Here, we discuss a Bayesian hierarchical
diffusion model and apply it to RT data. This model allows researchers to decompose performance
into meaningful psychological processes and to account optimally for individual differences and
commonalities, even with relatively sparse data. We highlight the advantages of the Bayesian
hierarchical diffusion model decomposition by applying it to performance on Approach–Avoidance
Tasks, widely used in the emotion and psychopathology literature. Model fits for two experimental
data-sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model
overcomes important limitations of current analysis procedures and provides deeper insight in latent
psychological processes of interest.
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Conclusions about latent psychological processes
are often based on performance in so-called speeded
response time (RT) tasks, where participants are

put under pressure to respond to a stimulus quickly
and the main dependent variable is response
latency. For instance, tasks such as the emotional
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Stroop task (Stroop, 1935; Williams, Mathews, &
MacLeod, 1996), the dot-probe task (MacLeod,
Mathews, & Tata, 1986; Salemink, van den Hout,
& Kindt, 2007), the implicit association test
(IAT; Greenwald, McGhee, & Schwartz, 1998)
and the Approach–Avoidance Task (AAT; De
Houwer, Crombez, Baeyens, & Hermans, 2001;
Krieglmeyer &Deutsch, 2010) are commonly used
in psychology in order to measure and understand
putative latent processes such as cognitive and
attentional biases, implicit memory associations
and implicit attitudes or action tendencies.

Despite their substantial contribution to the
literature, and despite their empirical popularity,
most RT tasks suffer from an important limitation.
This limitation concerns the suboptimal analysis
strategies that are employed to draw substantive
conclusions from the observed data. Specifically,
the standard methods of analysis do not directly
measure the psychological processes of interest, that
is, they use a general statistical model instead of a
cognitive process model. Moreover, the variability
or uncertainty involved in an individual’s data is
ignored by the consideration of a single-point
estimate (e.g., mean or median) per individual.

The aim of the present paper is to demonstrate
how the above limitations can be overcome by a
cutting-edge analysis technique known as a Baye-
sian hierarchical diffusion model decomposition.
This technique is applicable to the analysis of RT
tasks generally, but we illustrate its use here for the
AAT, a task that is widely used to measure
implicit action tendencies in experimental psycho-
pathology research (e.g., Rinck & Becker, 2007;
Spruyt et al., 2013).

The outline of this paper is as follows. We first
describe the theoretical foundations of AATs.
Second, we describe common AAT data analysis
techniques and their limitations. Next, we present
Ratcliff’s diffusion model (Ratcliff, 1978; Ratcliff &
McKoon, 2008) and outline its implementation
in a Bayesian hierarchical framework. We then
present two experimental data-sets: the first one
concerning avoidance tendencies—which are
mainly studied in anxiety disorders and phobias—
and the second data-set concerning approach
tendencies—which are mainly of interest in the

addiction literature. Throughout, we compare the
outcome of traditional analytic techniques to the
outcome of our diffusion model decomposition.
We conclude by summarising our results and
commenting on the generality of the new analysis
technique and the benefits and challenges that it
brings.

APPROACH–AVOIDANCE
REACTION TIME TASKS

People have the inherent tendency to approach
rewarding stimuli and avoid potential dangers (i.e.,
Thorndike’s “law of effect”, see Chance, 1999).
People, for example, tend to approach food when
hungry but will recoil from a car heading their
way. Various psychological theories conceptualise
these action tendencies as vital emotional reactions,
with positive valence cues automatically triggering
approach responses and negative valence cues
automatically triggering avoidance reactions
(Bradley & Lang, 2007; Frijda, 1988; Lang &
Bradley, 2008; Rutherford & Lindell, 2011).
Some theories even posit that emotions may be
best defined as action tendencies (Frijda, 1988;
Lang, 1985).

A common way to identify and measure action
tendencies is via AATs. Although different ver-
sions of AAT exist (Krieglmeyer & Deutsch,
2010), participants are typically instructed to
symbolically approach and avoid categories of
stimuli that differ in their emotional valence; the
critical assumption is that RTs are influenced both
by the valence of the stimulus (i.e., appetitive vs.
aversive) and by the response assignment
(approach vs. avoidance). For instance, partici-
pants in De Houwer et al.’s (2001) study had to
manoeuvre a virtual manikin towards and away
from positively and negatively valence words.
Results confirmed the expected interaction
between stimulus valence and response assign-
ment: participants responded faster when they had
to make the manikin approach words with positive
valence or when they had to make it avoid words
with negative valence than vice versa. In a similar
vein, Rinck and Becker (2007) instructed spider-
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fearful individuals and non-anxious individuals to
respond to pictures by pushing (avoidance) or
pulling (approach) a joystick. In the first block of
trials, half of the participants had to push the
joystick in response to pictures depicting spider
stimuli and pull the joystick in response to pictures
showing neutral stimuli, with the other half of the
participants doing the opposite. Instructions were
reversed for the second block. The results showed
that—compared to the control participants and
compared to the neutral pictures—the spider-
fearful participants were quicker to respond to
the spider pictures when they had to push than
when they had to pull. Similar AATs have been
used with a diversity of stimuli, including alcohol
(Spruyt et al., 2013; Wiers, Eberl, Rinck, Becker,
& Lindenmeyer, 2011; Wiers, Rinck, Kordts,
Houben, & Strack, 2010), cannabis (Cousijn,
Goudriaan, & Wiers, 2011), social groups (Neu-
mann, Hülsenbeck, & Seibt, 2004), facial expres-
sions (Heuer, Rinck, & Becker, 2007),
conditioned appetitive cues (Van Gucht, Van-
steenwegen, van den Bergh, & Beckers, 2008)
and conditioned fear cues (Krypotos, Effting,
Arnaudova, Kindt, & Beckers, 2014).

Although widely used across social and clinical
psychology, no consensus has been reached on
how to best analyse AATs statistically. After
reviewing the published literature, we found
divergence in analytic techniques as regards (1)
the normalisation of the RT distributions, (2) the
estimation of central tendency, (3) the handling of
error responses and (4) the computation of an
approach–avoidance tendencies index. At the same
time, there is consensus regarding other data
analysis strategies such as the collapsing of data
across participants. Regardless of the degree of
consensus, all current methods of analysis have
serious limitations: RTs and error rates are not
accounted for in a common framework; the
psychological process of interest is not estimated
directly; the shape of the RT distribution (for
correct and error responses) is left unaccounted
for; and the calculation of a single-point estimate
per individual ignores variability and implies a
considerable loss of information. These limitations
constrain the substantive conclusions that can be

drawn from AAT data. Increasing the validity of
the conclusions derived from AAT data is timely
given that AATs are increasingly applied in
intervention research. Specifically, variations of
the AAT tasks are currently being applied to
clinical populations (e.g., in alcohol addicts) as a
way to change dysfunctional action tendencies
(i.e., excessive approach towards alcohol stimuli
in the study of Wiers et al., 2011). Since decisive
conclusions as to whether action tendencies have
been successfully modified are based on the AAT
data, a more accurate estimation of AAT per-
formance will allow more solid conclusions regard-
ing the success or failure of action tendency
modification.

COMMON ANALYSIS TECHNIQUES
FOR AAT DATA

In this section, we summarise the common
analysis strategies for AAT data. We accompany
each strategy with examples from the literature on
the use of AAT in emotion or psychopathology
research along with our considerations.

Normalisation of the RT distribution

RTs are positively skewed and this complicates
their statistical analysis (Heathcote, Popiel, &
Mewhort, 1991). Consequently, researchers follow
several strategies for data normalisation. The two
most common strategies applied to the RTs of
each individual are outlier removal (Ratcliff, 1993)
and data transformation (Mead, 1990). For outlier
removal, different cut-off points are used which
can either be fixed (e.g., RTs longer than 3000 ms
in Van Gucht et al., 2008) or variable (e.g., top
and bottom 1% of RT distribution in Vrijsen, van
Oostrom, Speckens, Becker, & Rinck, 2013; or
RTs deviating more than two standard deviations
from the mean in Klein, Becker, & Rinck, 2011).
For data transformation, the log transformation is
the most popular (e.g., in Adams, Ambady,
Macrae, & Kleck, 2006 and in Chen &
Bargh, 1999).
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When used jointly, these approaches result in
RT distributions that are (almost) normal. How-
ever, outlier removal for skewed distributions is by
definition problematic: it can be difficult to tell
whether an extremely long RT is due to an
attentional lapse or whether it is a valid sample
from a right-skewed distribution (Heathcote et al.,
1991). Rather than transforming data so that they
meet the requirements of standard statistical tests,
it may be better to use statistical models that are
valid for the kind of skewness that is present in
RT data.

Estimation of central tendency

There is some debate on what measure of central
tendency best summarises RTs for each stimulus–
response condition. The most common choices are
the mean (e.g., in De Houwer et al., 2001) and the
median (e.g., in Rinck & Becker, 2007). The
median RT arguably provides a better summary
statistic (Hays, 1973) because it is less influenced
by outlying values compared to the mean (but see
Miller, 1988, for counter arguments). The main
problem with measures of central tendency is that
they summarise an entire RT distribution using a
single number, which implies a considerable loss
of information (McAuley, Yap, Christ, &
White, 2006).

Error responses

In the statistical analyses of AATs, error responses
are typically ignored (e.g., in Van Gucht et al.,
2008) or taken into account separately, by con-
ducting additional statistical tests with proportion
of errors as the new dependent variable (e.g., in
De Houwer et al., 2001). Both approaches can
yield misleading results. Ignoring error responses
results in a loss of information and can blind the
researcher to the signature finding of a speed–
accuracy trade-off, where faster responses can be
obtained at the cost of making more errors
(Pachella, 1974; Schouten & Bekker, 1967).
Conducting separate tests for RT and accuracy
similarly fails, as it does not acknowledge the
intimate connection between these two measures

of performance (e.g., Wagenmakers, van der
Maas, & Grasman, 2007). These drawbacks are
exacerbated by the fact that the speed–accuracy
trade-off is non-linear, such that an increase in
accuracy of a few percentage points may corres-
pond to a decrease in mean RT of hundreds of
milliseconds (e.g., Ratcliff & McKoon, 2008).

Ignoring within-subjects uncertainty

In most AAT studies, the mean or median RTs
(e.g., in De Houwer et al., 2001; Van Gucht et al.,
2008; Wiers, Rinck, Dictus, & Van den Wild-
enberg, 2009) of each participant are included in
the statistical analyses. Importantly, such an
approach, in which only one value per participant
is retained, implies that the individuals’ RTs are
known with absolute accuracy (i.e., without any
statistical noise), which is hardly the case in sparse
data-sets, such as those in many applications in
clinical psychology. In view of this difficulty in
individual data averaging, it could be argued that
analysing each participant separately would be
more accurate. However, such an approach would
hinder the valid generalisation of the results to the
population.

Computation of an AAT index

After the computation of central tendencies for
the different types of trials, researchers typically
calculate an approach–avoidance tendencies index
that represents the relative strength of the corre-
sponding action tendencies. Strategies for calcu-
lating this index include (1) taking the difference
between the mean RTs for congruent trials (i.e.,
approach positive valence stimuli and avoid neg-
ative valence stimuli) and for incongruent trials
(i.e., avoid positive valence and approach negative
valence), as in De Houwer et al., 2001; (2) taking
the difference of the differences between approach
and avoidance trials for each type of stimulus (e.g.,
in Wiers et al., 2010); and (3) assessing approach
and avoidance tendencies separately for each
stimulus category (e.g., in Voncken, Rinck, Deck-
ers, & Lange, 2011).
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To illustrate the differences of the above

computational strategies, we present a hypothetical

example in which an experimenter has collected

approach–avoidance RT data in response to pic-

ture stimuli with positive or negative valence. We

generated data from an ex-Gaussian distribution

that generally fits RT data well (Ratcliff, 1979),

for each stimulus–response category for one parti-

cipant (see Table 1 and online Supplementary

material). According to the first strategy, we

compute the AAT index by following three steps:

(1) take the mean RT of the congruent trials, in

this example the approach positive and avoid

negative conditions, (2) take the mean RT of the

incongruent trials, in this example the approach

negative and avoid positive conditions, and (3)

subtract the incongruent from the congruent trials.

In our simulated data-set, this results in an AAT

index of –167 ms. According to the second

strategy, we compute the AAT index as follows:

(1) compute the mean RT for each stimulus–
response category—in this example the combina-

tions are: (i) approach speed for positive pictures,

(ii) approach speed for negative pictures, (iii)

avoidance speed for positive pictures and (iv)

avoidance speed for negative pictures—and (2)

for each stimulus category separately, subtract the

avoidance responses from the approach responses.

In our example, for the positive valence stimuli, we

should subtract the mean RT of the avoid positive

picture condition from the approach positive

picture condition and similarly for the negative

stimuli. The third step, (3), would be to compute

the difference between the two resulting numbers.

In our example, this resulted in an AAT index of

–333 ms. The third and final strategy entails the

first two steps of the second strategy. In our data-

set, this resulted in a value of –307.07 ms for

positive stimuli, and a value of 26.01 ms for the
negative stimuli.

The example above shows that even with the
same data, the resulting AAT index differs
according to the selected computational strategy.
More importantly still, although one could debate
the merits and drawbacks of each approach, and
although in practice all strategies may lead to
similar conclusions, a core problem across the
different strategies as they are typically used is
that they collapse across different RT distribu-
tions. As such, they may lead to inaccurate AAT
estimations. Moreover, by computing the differ-
ence between two quantities that have been
averaged across participants and across trials, the
index of action tendencies is necessarily coarse.

Psychological processes involved in decision-
making

Like any other decision-making task in which
participants have to choose quickly between altern-
ative responses, AAT performance recruits basic
cognitive processes such as the speed of informa-
tion accumulation, bias, motor execution time and
response caution. In other tasks, these processes
have been quantified using the diffusion model
(Ratcliff, 1978; Wagenmakers, 2009), one of the
most prominent process models in experimental
psychology and neuroscience. AAT data have not
yet been analysed using the diffusion model. It is
therefore an open issue whether the model can
provide an adequate account of the data.

Summary

To sum up, the current data analysis strategies
employed in the AAT literature suffer from sub-
stantial shortcomings stemming from (1) their need

Table 1. Example mean RTs (in ms) for each stimulus (i.e., positive vs. negative) by response (i.e., approach vs. avoidance)
combination of our hypothetical in-text experiment

Approach positive valence
picture

Approach negative valence
picture

Avoid positive valence
picture

Avoid negative valence
picture

747.20 1054.27 777.08 751.07
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for normally distributed data, while RT distribu-
tions are often skewed; (2) the disregard of error
trials which can result in loss of information; (3) the
non-consideration of the speed–accuracy trade-off,
where faster responses are obtained in sacrifice of
accuracy; (4) the computation of an approach–
avoidance tendencies index that is relatively coarse,
as its computation is typically based on the collaps-
ing of different RT distributions; (5) the non-
consideration of within-subjects uncertainty; and
(6) the neglect of latent psychological processes
involved in the AAT.

BAYESIAN HIERARCHICAL
DIFFUSION MODELLING

This section outlines a statistical process model
approach that aims to overcome the shortcomings
discussed above. We first describe the diffusion
model and then present the advantages of the
hierarchical Bayesian framework that we use to
estimate the model’s parameters.

The diffusion model

The Ratcliff diffusion model (e.g., Ratcliff, 1978;
Ratcliff & McKoon, 2008; Smith & Ratcliff, in
press; Wagenmakers, 2009) conceptualises the
decision process as the interplay between different
psychological processes that are each represented
by a separate model parameter. According to the
model, every binary decision process starts at z, a
parameter reflecting the a-priori bias towards the
upper or lower boundary (representing one or the
other decision). The decision process itself consists
of the gradual accumulation of noisy information,
a process whose efficiency is reflected in drift
rate v. High absolute drift rates generate decisions
that are fast and accurate; slow absolute drift rates
(i.e., drift rates near zero) generate decisions that
are slow and error-prone. Information accumula-
tion continues until an upper or lower boundary is

reached and a decision is initiated. Boundary
separation a represents response caution and hence
quantifies the speed–accuracy trade-off. High
values of boundary separation result in accurate
but long RTs, and low values of boundary
separation result in short but error-prone RTs.
The final parameter, non-decision time Ter,
captures everything that precedes or follows the
decision process, such as stimulus encoding and
response execution (Luce, 1986). Although exten-
sions of the diffusion model (Ratcliff & Tuer-
linckx, 2002) account for across trial variability in
drift rate, starting point and non-decision time, we
limit ourselves here to the four main parameters.1

In sum, the major components of the diffusion
model (see Figure 1) are: (1) drift rate, v; (2)
boundary separation, a; (3) starting point, z; and
(4) non-decision time, Ter.

The diffusion model naturally accounts for a
number of benchmark findings (Ratcliff, 2002),
including the right-skew of RT distributions, the
speed–accuracy trade-off, the linear relation
between RT mean and RT standard deviation
(Wagenmakers & Brown, 2007), the relative
speed of errors as a function of bias and the fact
that the right-skew increases with difficulty.
Because the model parameters are associated with
specific cognitive processes, fitting the diffusion
model to data allows for an informative decom-
position of performance (e.g., Dutilh, Krypotos, &
Wagenmakers, 2011; Leite & Ratcliff, 2011;
Mulder, Wagenmakers, Ratcliff, Boekel, & For-
stmann, 2012; van Ravenzwaaij, Dutilh, &
Wagenmakers, 2012). In sum, a diffusion model
decomposition allows for a more detailed and
informative summary of performance than can be
achieved by most standard statistical analysis
techniques for AATs. Of importance, variants of
the diffusion model have recently led to increases
in understanding regarding emotion effects (e.g.,
see Pe, Vandekerckhove, & Kuppens, 2013) and
psychopathology (e.g., see Ho et al., 2014; Strauss

1As will be apparent later, the data-sets under consideration are sparse, with no more than 8 trials in each of four
conditions, and error rates are low. In such situations—representative of real-world data-sets—adding more parameters to
account for subtle effects is contraindicated.
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et al., 2011; White, Ratcliff, Vasey, & McKoon,
2010a, 2010b).

Bayesian hierarchical modelling

As mentioned before, a common approach in the
analysis of AATs is to collapse data across trials
and participants, and to estimate the grand means
for each combination of stimulus and response
assignment. This nomothetic approach (Kristjans-
son, Kircher, & Webb, 2007) assumes that the
mean responses are valid representations of indi-
viduals’ scores, with any within-group differences
treated as statistical noise. Consequently, indi-
vidual differences are not taken sufficiently into
account (Heathcote, Brown, & Mewhort, 2000;
Ratcliff, 1979) even though these differences may
be pronounced. On the other hand, the idiographic

approach (Kristjansson et al., 2007) considers
individual differences as systematic and reliable.
In the idiographic approach, each participant is
considered in isolation. With sparse data, however,
this approach is prone to error (Efron & Mor-
ris, 1977).

In between the “complete pooling” approach
implicit in the averaging method and the “com-
plete independence” approach implicit in per-
participant analyses lies a compromise solution
known as hierarchical modelling (Rouder & Lu,
2005; Shiffrin, Lee, Kim, & Wagenmakers,
2008). This solution takes within-subject variabil-
ity into account, while at the same time-assuming
that participants are similar to one another, with
the degree of similarity estimated from the data
(e.g., Shiffrin et al., 2008). Specifically, in hier-
archical models, there are two kinds of parameters:

Figure 1. Graphical representation of the diffusion model (Ratcliff & McKoon, 2008). Following stimulus presentation (not shown), noisy

information is accumulated until reaching the upper boundary—associated with the correct response—or the lower boundary—associated with

the incorrect response—following which a response is initiated. Observed RTs are the sum result of decision time and non-decision time:

decision time reflects the duration of the information accumulation process, whereas non-decision time reflects the duration of non-specific

processes such as stimulus encoding and response execution.
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(1) group-level parameters (monothetic patterns)
and (2) individual-level parameters (idiographic
patterns) that are constrained by the group-level
parameters (Morey, Pratte, & Rouder, 2008;
Nilsson, Rieskamp, & Wagenmakers, 2011). The
group-level parameters capture the extent to which
the participants are similar and strength can be
borrowed across participants. For instance, assume
that each participant i has a drift rate vi. Each
individual drift rate may be assumed to be
constrained by a group-level normal distribu-
tion with mean µv and variance r2v , that is, vi ~
N (µv, r2v). Note here, that in a hierarchical
framework, the within-subject variability is taken
into account, in contrast to common averaging
techniques (see above). When participants are very
similar to each other, σ2 → 0, the hierarchical
approach reduces to the nomothetic approach.
When participants are highly dissimilar, σ2 >> 0,
the hierarchical approach reduces to the idio-
graphic approach. Thus, the hierarchical method
tunes itself to the degree of similarity between
participants and adjusts the parameter estimates
accordingly. When participants are very similar,
precise estimates can be obtained even with few
trials per participant. This is of great benefit in
situations where one has many participants but
few trials per participant, as is the case in many
applications in clinical psychology.

In the following, we estimated the model
parameters in a Bayesian manner. This means
that parameters are given prior distributions that
are then updated to posterior distributions. These
distributions reflect the degree of belief or degree
of certainty associated with their possible values.
The Bayesian framework has several theoretical
advantages over classical frequentist statistics
(Dienes, 2011; Lee, 2011). In addition, hierarchical
models (and possible extensions) are naturally
accommodated within the Bayesian framework
(Dyjas, Grasman, Wetzels, van der Maas, &
Wagenmakers, 2012; Lee, 2011; Lee & Wagen-
makers, 2013; Rouder&Lu, 2005;Wiecki, Sofer, &
Frank, 2013). Nowadays, Bayesian estimation is
relatively straightforward using numerical methods
such as Markov chain Monte Carlo (MCMC;
Lynch, 2007).

In sum, the Bayesian hierarchical model produces
posterior distributions for model parameters both on
the individual level and on the group level. In
general, sparse data procedures, typical in psycho-
pathology research, suggest wide posterior distribu-
tions, reflecting high uncertainty in the parameter
values. However, with many somewhat similar
participants, the group variance may be estimated
to be low, and this encourages the borrowing of
strength across participants, sharpening and shrink-
ing the individual estimates towards the group mean
(for a frequentist discussion of the advantages of
shrinkage, see Efron &Morris, 1977).

All in all, the Bayesian hierarchical diffusion
model decomposition (1) does not assume normal
RT distributions, (2) accounts for error trials and
the speed–accuracy trade-off, (3) allows for fine-
grained assessment of approach–avoidance tend-
encies, (4) respects individual differences and (5)
estimates latent psychological processes involved
in the AAT. Next, we fit our model to two
experimental data-sets.

MODEL APPLICATION TO
EXPERIMENTAL DATA

We applied the Bayesian hierarchical diffusion
model to the data of Experiment 1 of Krypotos
et al. (2014), from now on data-set 1, and
Experiment 1 of Van Gucht et al. (2008), from
now on data-set 2. We have selected these data-
sets because they both have a limited number of
trials and participants, typical for the experimental
psychopathology literature. Furthermore, condi-
tioned avoidance responses, tested in the first
data-set, are particularly relevant for the anxiety
disorders literature, whereas approach responses,
tested in the second data-set, are of prime interest
in addiction research. Both data-sets are available
on request.

Experimental data-set 1

Description of experiment—data-set 1

Our participants (N = 32) first underwent a fear
conditioning procedure during which a picture of
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a neutral stimulus (i.e., the Conditioned Stimulus
or CS+; for instance, a cube) was paired with an
electric shock, whereas another neutral stimulus
(CS–; for instance, a cylinder) was never followed
by an electric shock. Each CS was presented
8 times (16 times in total). Each trial lasted 8 s,
with inter-trial intervals of 15, 20 or 25 s, with a
20-s mean. In case of a CS+ trial, electric stimula-
tion of 2 ms was delivered to the participant’s non-
preferred hand, 7.5 s after stimulus onset.

Following the conditioning procedure, partici-
pants were instructed to move a virtual manikin
quickly and accurately towards and away from the
presented CSs. In each trial, the manikin was
presented on the top or bottom half of a black
screen. After 1500 ms, a CS picture was presented
on the other half of the screen. Then, participants
could move the manikin up or down by pressing
the “B” or the “Y” button, respectively.2 Each
participant contributed 32 RTs, divided equally
across four categories: (1) Approach CS+ (incon-
gruent), (2) Approach CS– (congruent), (3) Avoid
CS+ (congruent) and (4) Avoid CS− (incongru-
ent). We expected participants to be faster in the
congruent trials (i.e., avoid the CS+ and approach
the CS–) than in the incongruent trials (i.e.,
approach the CS+ and avoid the CS–). Our
hypothesis stems from the observation that the
CS+ stimulus evokes negative evaluations, since
during the fear conditioning procedure it was
paired with shock, and the CS− positive evalua-
tions, since during the fear conditioning procedure
it signalled safety (i.e., absence of shock). CS
evaluations were also in line with this hypothesis
(see Krypotos et al., 2014).

Initial analyses—data-set 1

Repeating the original analyses for the sake of
completeness, we computed median RTs for each
individual and for each condition. The means of
the individual medians are depicted in the top
panel of Figure 2. We then performed a 2
(Stimulus Type: CS+ vs. CS–) × 2 (Required

Response: approach vs. avoidance) repeated mea-
sures frequentist analysis of variance (ANOVA)
with Stimulus Type and Required Response as
within-subjects factors.

Results showed a non-significant main effect of
Stimulus Type, F(1, 31) = 1.34, p = .26, g2p = .04,
and a significant main effect of Required
Response, F(1, 31) = 9.33, p = .01, g2p = .23. Of
importance, the Stimulus Type × Required
Response interaction was significant, F(1, 31) =
7.56, p = .01, g2p = .20, indicating that participants
were faster in approaching the CS– and avoiding
the CS+ than the reverse.

Given that conventional significance tests over-
state the evidence against the null hypothesis
(Edwards, Lindman, & Savage, 1963; Sellke,
Bayarri, & Berger, 2001; Wagenmakers, 2007),
we also performed a Bayesian repeated measures
ANOVA (Rouder, Morey, Speckman, & Prov-
ince, 2012; Wetzels, Grasman, & Wagenmakers,
2012). The key outcome of this analysis is the
Bayes factor (BF), a quantity that grades the
decisiveness of the evidence that the data provide
for one model versus another (Jeffreys, 1961). A
BF of 10, for example, indicates that the data are
10 times more likely under one model than under
the other. Here, we compared a model that takes
both the main effects and their interaction into
account (i.e., the full model) to a model that
includes only the main effects (i.e., the restricted
model). The results showed that the data are
almost 17 times (BF = 16.92) more likely under
the full model than under the restricted model.
This result is consistent with the frequentist
ANOVA.

General method—data-set 1

The major challenge in fitting the model to the
data is that there are only eight observations
per participant per condition. Confronted with
such a sparse data-set, traditional methods are
simply unable to estimate the model parameters in
any meaningful way. The Bayesian hierarchical

2 In the original experiment, participants were separated into two groups with half of the participants responding to a
relevant stimulus feature (i.e., stimulus shape) and the other half to an irrelevant stimulus feature (i.e., the orientation of the
surrounding frame). However, since no differences were found between the groups, we collapsed data across groups.
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implementation, however, borrows strength across
participants through group-level structures, uses
prior knowledge about plausible parameter values
to restrict the parameter space and produces
posterior distributions to indicate the uncertainty
about the parameters at hand. Nevertheless, there
are limits on the degree to which a sparse data-set
can support the estimation of parameters in a
relatively complex model. Hence we restricted the
model in several ways. First, we assumed that
performance differences across the four conditions
were due to drift rate only. This assumption is
based in part on the typical AAT trial structure in
which participants have no advanced knowledge
about the nature of the stimulus and the required
response (approach vs. avoidance). Second, we
assumed a symmetric starting point, z = a/2, so
that avoid and approach responses were equally
attractive a priori. Finally, we did not allow
parameters a, z and Ter to vary across trials (e.g.,
Wagenmakers et al., 2007). Hence, our model is a
measurement model in which we assumed a priori
which parameters are allowed to differ across
conditions. The goal of this measurement model
is to offer a comprehensive and principled altern-
ative to the less sophisticated measurement models
that are currently in use. This approach is an
example of “cognitive psychometrics” (Batch-
elder, 1998).

We estimated, for each participant i, the
posterior distributions of six different parameters:

Figure 2. Top panel: Average mean RT in ms for Experiment 1

of Krypotos et al. (2014). Error percentages for each condition are

shown on top of each bar. Error bars represent standard errors of

the mean. Middle panel: Kernel density estimates of the posterior

distributions for the drift rate parameters of the first data-set

(Krypotos et al., 2014). Note that the distributions refer to the

group parameters. The left panel shows the drift rate distribution

for the Avoid CS– condition. The right panel shows the drift rate

distributions for the Approach CS–, Approach CS+ and Avoid CS+

conditions, all relative to the Avoid CS– condition. From the

results, it is apparent that (1) participants exhibited the lowest drift

rate in the Avoid CS– condition, compared to the other three

conditions and (2) that the Approach CS–, Approach CS+ and

Avoid CS+ conditions highly overlap with each other. Bottom

Panel: Kernel density estimate of the posterior distribution for the

group drift rate AAT index for data-set 1. The posterior mass is

mostly positive, suggesting that, as expected, participants accumu-

lated information faster on congruent compared to incongruent

trials.
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four drift rates (i.e., one per condition), boundary
separation and non-decision time. Since all parti-
cipants contributed to all stimulus–response cat-
egories, we used a within-subjects model in which
one arbitrary drift rate—here the one correspond-
ing to the “Avoid CS−” condition in which the
longest RTs were observed—was designated as the
baseline, and the other three drift rates were
estimated as differences from that baseline.
Choosing any other drift rate as baseline yields
identical results. We used informative priors which
reflect parameter values from a meta-analysis by
Matzke and Wagenmakers (2009).3

All observations for every participant were
entered in our analysis. When using MCMC, it is
important to ensure that the sampled values have
converged from the random starting value to the
posterior distribution. To assess convergence we ran
three chains, each one of them consisting of 10,000
samples.3 Next, we assessed convergence by com-
puting the R-hat (Gelman–Rubin) statistic, with
values below 1.1 indicating successful convergence,
and by visually inspecting the chains in order to see
whether they resembled a “fat hairy caterpillar”.

Following that, we assessed the quality of the
model fit by first simulating data, based on the
model’s parameter estimations, and by then plot-
ting the real data against the simulated data for the
.1, .3, .5 and .9 RT quantiles for each stimulus by
response condition.3

We then defined a group-level “drift rate”
AAT index as the difference in drift rate between
the incongruent and congruent conditions. That
is, we obtained a posterior distribution for the drift
rate AAT index by using the group posterior
distributions for the drift rate of each condition

and by computing the final AAT index as follows:
AATv = mean (Approach CS�v , Avoid CSþv )—
mean (Approach CSþv , Avoid CS�v ).

4 By defining
the AAT index on the level of the latent drift rate
process, we avoid ambiguity about how to average
over RT distributions, we take both RT and
accuracy into account and we avoid contamination
from external processes such as response caution
and non-decision time.

Posterior distributions—data-set 1

All R-hat values were below 1.1, indicating
successful convergence for all chains. Furthermore,
we visually inspected the chains and confirmed
that they resembled a “fat hairy caterpillar”.5 The
simulated data fit the real data quite well (see
online Supplementary material).

The middle panel of Figure 2 provides density
plots of the posterior distributions for the different
drift rates.6 Note that the drift rates in the right
panel (i.e., Approach CS−, Approach CS+ and
Avoid CS+) are shown as differences with respect
to the drift rate in the left panel (i.e., Approach
CS). Also note that larger vs indicate faster
information accumulation. The panel plots shows
that the drift rate at the Approach CS– is much
lower than the other three drift rates, which largely
overlap with each other.

We then computed the drift rate AAT index as
AATv = mean (Approach CS�v , Avoid CSþv )—
mean (Approach CSþv , Avoid CS�v ) and plotted
its posterior distribution (see bottom panel of
Figure 2). Most of the posterior mass is positive,
suggesting that participants were indeed faster in
avoiding the CS+ and approaching the CS– than
the other way around.7

3 See online Supplementary material for more details on our modelling strategy and accompanying plots.
4We chose the specific formula over alternatives ones (e.g., see AAT computation strategies B and C) as comparing

congruent to incongruent trials is closer to how performance is evaluated in other stimulus compatibility tasks, such as the
Simon task (see De Houwer et al., 2001 and the supplementary material of Krypotos et al., 2013 for more details).

5 See online Supplementary material for the relevant plots of all group parameters.
6 As we were mainly concerned with drift rates, we included the posterior distributions of the a and the Ter parameters in

the online Supplementary material.
7 This result is suggestive only. A stricter test requires a Bayesian test using Bayes factors (Jeffreys, 1961; Lee &

Wagenmakers, 2013; Rouder & Morey, 2012). The development of default Bayes factor hypothesis tests for hierarchical
models is the topic of current statistical investigation.
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Discussion—data-set 1

The model fit results suggest that participants’
drift rate was the lowest in the Avoid CS–

condition compared to the other three condi-
tions, which were largely similar. In this particular
data-set, the pattern of results echoes that of the
initial and less sophisticated analyses, in which
RTs were used as the dependent variable.

Experimental data-set 2

Description of experiment—data-set 2

In the previous data-set, avoidance was the
response of main interest. Here, we demonstrate
that the model also performs well when approach
is the chief reaction. Approach responses are of
prime interest in the addiction literature (Eberl
et al., 2013). For the present demonstration, we
applied the model to the data of Experiment 1 in
the study by Van Gucht et al. (2008). In that
study, Van Gucht et al. (2008) induced an
approach tendency towards initially neutral cues
(i.e., serving trays) by pairing one tray with the
consumption of a participant’s favourite chocolate
(CS+) and another tray with no chocolate con-
sumption (CS–). During the acquisition proced-
ure, each CS+ or CS– tray was presented 4 times
(8 times in total). At the centre of each tray, there
was a piece of chocolate, wrapped in aluminium
foil. On each trial, participants were first asked to
pay attention to the colour of the tray (i.e., green
or white). Afterwards participants were asked to
unwrap the piece of chocolate and smell it (for
about 1 min), and in case of a CS+ trial, to eat it.
The inter-time intervals were fixed to 30 s.

In order to study whether craving tendencies
persist after an extinction procedure (i.e., presenta-
tion of the CSs without any of them being
followed by chocolate consumption), Van Gucht
et al. (2008) tested two groups. Group ABA (N =
16) performed the acquisition in context A (i.e.,
lights were turned on), extinction in context B
(i.e., lights were turned off) and the test of
approach tendencies in context A. The extinction
phase entailed the unreinforced presentation
(i.e., no chocolate consumption) of each CS for 8

times (16 trials in total). Whether context A or B
referred to lights on or off was counterbalanced
across participants. Group AAA (N = 16) per-
formed all phases of the experiment in the same
context (i.e., lights were either on or off). As
conditioned responses are context dependent
(Bouton, 1993; Effting & Kindt, 2007; Vansteen-
wegen et al., 2005), Van Gucht et al. (2008)
expected approach tendencies to be absent in the
AAA group, as the AAT task was performed in

the same context in which extinction took place,
whereas in the ABA group, Van Gucht et al.
(2008) expected action tendencies to be present as
the AAT was performed in the same context in
which acquisition took place, different from the
extinction context. The sequence of events in the
AAT was similar to that of the AAT used in
the first experiment of Krypotos et al. (2014) with
the exception that in the experiment of Van Gucht
et al. (2008), the CSs were presented 750 ms after
the manikin’s onset.

Initial analyses—data-set 2

Similar to the original analysis (Van Gucht et al.,
2008), trials with incorrect responses and RTs
longer than 3000 ms were excluded from consid-
eration. Mean RTs were then computed for each
stimulus–response assignment, for each particip-
ant. Of importance, Van Gucht et al. (2008)
divided the trials into approach CS+ (including
trials in which participants had to approach the
CS+ and trials in which they had to avoid the
CS−) and avoid CS+ (participants had to approach
the CS– and avoid the CS+). A 2 (Group: AAA
vs. ABA) × 2 (Response Assignment: Approach

CS+ vs. Avoid CS+) frequentist repeated measures
ANOVA with Group as a between-subjects factor
and Response Assignment as within-subjects
factors showed a main effect of Response Assign-
ment, F(1, 30) = 21.21, p < .001, and a significant
Group × Response Assignment interaction, F(1,
30) = 7.77, p = .01, with participants in the ABA
group approaching the CS+ faster than avoiding it,
t(15) = –5.70, p < .001, and no statistically
significant differences between the approach and
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avoidance of the CS+ for the AAA group, t(15) =
–1.1, p = .28 (see top panel of Figure 3).

We next performed a Bayesian ANOVA,
comparing a model that includes both main effects
and the interaction (i.e., the full model) to a model
that contains only the main effects (i.e., the
restricted model). This comparison yielded a BF
of 1.30. In Bayesian terms, this is “anecdotal
evidence” for the full model that includes the
interaction—in other words, the data are almost as
likely under the restricted model as they are under
the full model (Wetzels, Ravenzwaaij, & Wagen-
makers, in press). In light of this result, we
investigated the nature of the interaction of
interest using separate Bayesian t-tests (Rouder,
Speckman, Sun, Morey, & Iverson, 2009; Wet-
zels, Raaijmakers, Jakab, & Wagenmakers, 2009),
comparing approach CS+ and avoid CS+ trials for
each group separately. Results showed that
although no effect of Response Assignment
emerged for the AAA group (i.e., BF = .54),
decisive evidence was obtained for the ABA group
(i.e., BF = 501.82) indicating that participants
were indeed faster to approach the CS+ than to
avoid it. These results are in line with those
obtained from the frequentist analysis.

General method—data-set 2

For consistency with our previous model fit, we
did not separate the trials into approach and avoid
CS+ as in the analysis of Van Gucht et al. (2008).

Figure 3. Top panel: Mean RTs in ms for the AAA (left panel)

and ABA (right panel) group of the first experiment of Van Gucht

et al. (2008). Error percentages for each condition are shown on top

of each bar. Error bars represent standard errors of the means.

Middle panel: Kernel density estimates of the posterior distributions

for the drift rate parameters for the AAA group of the second data-

set (Van Gucht et al., 2008). All distributions refer to the group

parameters. The left panel shows the drift rate distribution for the

Approach CS+ condition. The right panel shows the drift rate

distributions for the Approach CS–, Avoid CS– and Avoid CS+

conditions, all relative to the Approach CS+ condition. From the

results, it is apparent that (1) participants exhibited higher drift

rate in the Approach CS+, compared to the other three conditions

and (2) that the Approach CS–, Avoid CS– and Avoid CS+

conditions highly overlap with each other. Bottom panel: Kernel

density estimate of the posterior distribution of the group drift rate

AAT index for the AAA group of data-set 2. The posterior mass is

mostly positive, suggesting that, as expected, participants accumu-

lated information faster on congruent compared to incongruent

trials.
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Instead, different drift rates (v) were computed for
each stimulus (CS+ vs. CS−) by response
(Approach vs. Avoidance) combination. Note
that we fitted the model to the data of each group
(i.e., AAA and ABA) separately. For applying the
model to each group, we used as a baseline the
approach CS+ condition, in which the largest
difference in RTs was observed compared to the
other three conditions; all other drift rates were
computed in reference to this baseline. Choosing
any other drift rate as baseline yields identical
results. Different Ter and a parameters were also
computed for each group separately and the
parameter z was again fixed to the middle of the
two boundaries (i.e., a/2). Convergence and model
fit were evaluated as they were for the analysis of
the first data-set.3 We also computed the AAT
index, similarly to how the AAT index was
computed for the previous data-set, which was
defined as the difference between the drift
rate for congruent and incongruent trials, i.e.,
AATv = mean (Approach CSþv , Avoid CS�v )—
mean (Approach CS�v , Avoid CSþv ).

Posterior distribution—data-set 2

All R-hat values were below 1.1, indicating successful
convergence for all chains. Furthermore, all chains
were visually inspected and they each resembled a “fat
hairy caterpillar”.5 Last, after simulating data in a
similar manner as was done for data-set 1, we plotted
the real data against the simulated data for each group
separately. Figures 9 and 10 of the online Supple-
mentary material show that the model predictions
match the real data quite well.

The middle panels of Figure 3 provide density
plots of the posterior distributions for the different
drift rates for the AAA group; the top panel of
Figure 4 does the same for the ABA group.5 Note
that in both cases, the drift rates in the left panel
(i.e., Approach CS−, Avoid CS– and Avoid CS+)
are shown as differences with respect to the drift
rate in the right panel (i.e., Approach CS+). Larger
vs indicate faster information accumulation. The
panel plot shows that the drift rate for the
Approach CS+ trials is much higher than the
other three drift rates, which largely overlap with

each other. However, those differences seem to be
more pronounced for the ABA group than for the
AAA group. Regarding the AAT indices, the
AAT index for the ABA group (see bottom panel
of Figure 4) is positioned more to the right,
indicating stronger approach tendencies, compared
to the AAT index of the AAA group (see bottom
panel of Figure 3). In order to quantify this
difference, we obtained the posterior distribution
for the differences in the AAT index between the
ABA group and the AAA group, that is ΔAAT =
AAT (ABA)—AAT (AAA). Then, we considered
two order-estimated distinct hypotheses. The first
hypothesis, H>0, holds that the ΔAAT is positive,
and the second hypothesis, H<0, holds that the
ΔAAT is negative. In order to quantify the support
that the data provide for H>0 versus H<0, we can
calculate a BF based on the posterior mean of
ΔAAT that is greater than zero. The resulting BF is
equal to 31.79 and the credible interval ranged
from –.012 to 0.83 (see bottom panel of Figure 4).
These results support the hypothesis that indeed,
the ABA group accumulated information faster
than the AAA group. As before, we note that these
results are suggestive only, with a stricter test
requiring a BF hypothesis test that includes a point
null hypothesis. The development of such test is
the topic of current investigation.

Discussion—data-set 2

The results of the second data-set show the
expected patterns; participants exhibited higher
speed of information accumulation in the
approach CS+ condition than the other conditions.
These differences were more pronounced in the
ABA group, with larger differences between the
different conditions, than in the AAA group.
Nevertheless, the model was able to pick up
differences between the various conditions for the
AAA group, even when the main analyses did not
seem to be able to detect any differences.

CONCLUDING COMMENTS

The goal of the present paper was to introduce a
hierarchical Bayesian drift diffusion model
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decomposition of RT tasks. To illustrate the

power of the approach, we have applied our model

to the data of two studies that used the AAT, a

commonly used task across experimental psycho-

pathology, emotion research and social psycho-

logy, in which either avoidance (data-set 1) or

approach (data-set 2) was the response of main

interest. The descriptive results of data-set 1

indicate that participants accumulated information

slower when they had to avoid the CS– compared

to the other three, largely similar, conditions. For

data-set 2, results showed that participants accu-

mulated information faster when they had to

approach the CS+ than for any of the other

conditions, which were largely similar as well.

Furthermore, as was shown by the AAT drift rate

indices, the between-conditions differences in

data-set 2 were more pronounced in the ABA

than in the AAA group.

The presented model has a number of advan-

tages over data analysis techniques commonly used

for RT tasks (see above). First, the entire RT

distributions for correct as well as incorrect responses

are included within a single inferential framework.

This can lead to more complete performance pre-

dictions than when considering merely the central

tendencies of RTs for speed and the proportion of

correct responses for accuracy. Second, the model

accounts for the positive relationship between speed

and accuracy (Schouten & Bekker, 1967), a rela-

tionship that although always present in RT tasks is

Figure 4. Top panel: Kernel density estimates of the posterior

distributions for the drift rate parameters for the ABA group of the

second data-set (Van Gucht et al., 2008), with results resembling

those of the AAA group. The left panel shows the drift rate

distribution for the Approach CS+ condition. The right panel shows

the drift rate distributions for the Approach CS–, Avoid CS– and

Avoid CS+ conditions, all relative to the Approach CS+ condition.

Note that all depicted distributions refer to the group variables.

From the results, it is apparent that (1) participants exhibited

higher drift rate in the Approach CS+, compared to the other three

conditions and (2) that the Approach CS–, Avoid CS– and Avoid

CS+ conditions highly overlap with each other. Middle panel: The

distribution of the group drift rate AAT index for the ABA group of

data-set 2. The posterior mass is mostly positive, suggesting that, as

expected, participants accumulated information faster on congruent

compared to incongruent trials. In comparison to the AAT index of

group AAA, this density is positioned more to the right, indicating

stronger relative approach tendencies. Bottom panel: The posterior

kernel estimate of the posterior distribution regarding the differences

in AAT indices between the AAA and the ABA groups. The greyed

area depicts the values above zero.
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usually not considered in commonly applied analysis
techniques.

Furthermore, our approach inherits the advan-
tages from hierarchical modelling (Rouder & Lu,
2005; Shiffrin et al., 2008) and from Bayesian
inference (Lee, 2011). First, hierarchical model-
ling features parameter estimation at the group
level and at the level of the individual; the group-
level parameters constrain the individual-level
parameters, and the individual-level parameters
inform the group-level parameters. Such reciprocal
relations between the group and the individual
parameters result in more complete and accurate
predictions that can be applied both to particular
individuals and to the population (Rouder & Lu,
2005). In addition, in Bayesian inference, para-
meter estimation is based both on the actual data
and the parameter priors; consequently, meaning-
ful results can be obtained even when only a
limited number of trials per participant is available.
These model features provide concrete advantages
for psychologists, especially when dealing with
clinical populations where the number of partici-
pants and the number of trials per individual are
typically small and individual differences are at
least as relevant as group-level performance.

Last, our model can shed light on the cognitive
processes (e.g., response caution or speed of
information accumulation) involved in RT
decision-making tasks (Wagenmakers, 2009) and
as such can give a detailed description of decision-
making performance. This model’s ability enables
researchers to make more pluralistic and precise
predictions as towhichparameterswill be affectedby
different experimental manipulations, enabling a
deeper investigation of decision-making processes.

Here, we fit our model to two experimental
data-sets in which either threatening (Experi-
ment 1) or appetitive (Experiment 2) conditioned
stimuli were used. Our model could just as well be
applied to data-sets in which non-conditioned
stimuli are considered (e.g., data on individuals
with substance abuse disorder, Wiers et al., 2011).
An advantage of using stimuli with pre-existing
hedonic charge is that more trials per participant can
be collected, something that should allow tests of

models in which multiple parameters per condition
are allowed to vary (Lewandowsky & Farrell, 2010).

Our measurement model was based on specific
assumptions (i.e., any difference between condi-
tions is captured by differences in drift rate rather
than boundary separation, bias or non-decision
time) that were based on specific characteristics of
trial order and instructions provided in most AAT
experiments. Modifications to the AAT procedure
could warrant the use of alternative measurement
models. For example, an experiment in which
participants first see the CSs and then another
irrelevant stimulus (e.g., an arrow), which indi-
cates whether they have to approach or avoid each
stimulus, may call for a model in which a-priori
bias rather than information accumulation is
allowed to differ per condition.

We have used the AAT as an example task for
which our model can be used. Similar analyses could
easily be applied to any other RT task (e.g. emotional
Stroop task, dot-probe task and IAT). Of note, the
application of Bayesian hierarchical models has
increased our understanding of other types of
emotion tasks as well (e.g., emotional flanker task;
Pe et al., 2013; see also Vandekerckhove, Tuer-
linckx, & Lee, 2011). We believe that the shift from
commonly used techniques (e.g., ANOVAs) to
cognitive modelling will allow a richer and more
accurate inference on experimental data-sets (Lee,
2011; Wiecki, Poland & Frank, in press).

The computation of parameters in a hierarch-
ical manner also enables a fuller investigation of
individual differences, even when dealing with
sparse data-sets. To date, individual differences
in RT tasks are typically explored by either the
computation of different RT indices for separate
groups (e.g., Rinck & Becker, 2007; Wiers et al.,
2009) or the use of correlations between some RT
index and particular individual differences factors
(Klein et al., 2011). Parameter extraction in terms
of our model allows the testing of individual
differences in terms of not only the RT index
but also the psychological parameters involved in
decision-making. In the study by Rinck and
Becker (2007), for example, the researchers could
have fit a standard regression model to the relation
between the AAT index and spider fear, rather
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than separating the participants into groups with
high and low spider phobia.

Despite its advantages, the presented analytic
approach also has limitations. For example, our
inference was based solely on the shape of the
posterior distribution and did not feature a statistical
null hypothesis test (e.g., see Gelman & Hill, 2007
for a similar approach in Bayesian regression mod-
elling). We present our paper as a first detailed
demonstration of the presented analytic technique,
worthy of further research and elaboration. We also
acknowledge that interested researchers face a start-
up cost in getting to master the tools for applying
diffusion models and performing hierarchical Baye-
sian parameter estimation. However, the wealth of
available resources on cognitive modelling (e.g.,
Heathcote, Brown, & Wagenmakers, in press; and
online Supplementary material) keeps such a cost to a
minimum. Furthermore, we believe that the advan-
tages of these novel analyses are well worth the effort.

In sum, we presented a Bayesian hierarchical
psychological process model for analysing RT data
that overcomes the pitfalls of previous analysis
techniques. With the suggested model, researchers
should be able to draw more robust and veridical
conclusions from their data as the statistical results
(1) take into account the uncertainty of each
individual’s estimate, (2) respect the speed–accu-
mulation trade-off and (3) are based on estimates
of the underlying decision-making processes. The
practical applicability of the model was explored by
accounting for findings from two real-life AAT
data-sets. As more and more studies use RT tasks,
we hope that the present approach will help
researchers in the study of decision-making under
conditions of speeded responding.
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