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ABSTRACT
Threat conditioning procedures have allowed the experimental investigation of the patho-
genesis of Post-Traumatic Stress Disorder. The findings of these procedures have also pro-
vided stable foundations for the development of relevant intervention programs (e.g.
exposure therapy). Statistical inference of threat conditioning procedures is commonly
based on p-values and Null Hypothesis Significance Testing (NHST). Nowadays, however,
there is a growing concern about this statistical approach, as many scientists point to the
various limitations of p-values and NHST. As an alternative, the use of Bayes factors and
Bayesian hypothesis testing has been suggested. In this article, we apply this statistical
approach to threat conditioning data. In order to enable the easy computation of Bayes
factors for threat conditioning data we present a new R package named condir, which can be
used either via the R console or via a Shiny application. This article provides both a non-
technical introduction to Bayesian analysis for researchers using the threat conditioning
paradigm, and the necessary tools for computing Bayes factors easily.
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Threat conditioning1 is one of the dominant para-
digms in the experimental study of Post-Traumatic
Stress Disorder (PTSD) (Beckers, Krypotos, Boddez,
Effting, & Kindt, 2013; for relevant examples see Orr
et al., 2000; Sijbrandij, Engelhard, Lommen, Leer, &
Baas, 2013). This procedure typically involves the
pairing of an initially neutral stimulus (e.g. picture
of a square; Conditioned Stimulus or CS) with an
evolutionary aversive stimulus or event (e.g. shock
administration; Unconditioned Stimulus or US). As
a result of this procedure, the CS will come to evoke
threat/fear responses (e.g. higher level of skin con-
ductance; Conditioned Responses or CRs) even in the
absence of the US. Threat conditioning has proven
particularly useful in uncovering the working
mechanisms behind the acquisition of PTSD sympto-
matology, with a number of theories suggesting that
associations between primarily innocuous stimuli
(e.g. visit to a shopping centre) with aversive stimuli
or events (e.g. a terrorist attack) lie at the core of the
pathogenesis of, among others, trauma-related disor-
ders (Bouton, Mineka, & Barlow, 2001; Mineka &
Zinbarg, 2006). Conditioning procedures have pro-
vided the basis for the development of therapeutic
interventions for the reduction of PTSD symptoma-
tology. To illustrate, the roots of exposure therapy,

one of the commonly used interventions for PTSD,
are found in the conditioning procedure of threat
extinction (Eddy, Dutra, Bradley, & Westen, 2004;
Foa, Steketee, & Rothbaum, 1989).

As in most experimental and applied branches in
psychology, statistical inference of threat condition-
ing procedures is based on p-values and Null
Hypothesis Significance Testing (NHST). Despite its
popularity, this statistical approach has long been
heavily criticized, with many pointing to its serious
shortcomings (e.g. Cohen, 1994; Wagenmakers,
2007).

Here we present an alternative type of statistical
approach that overcomes most, yet not all, short-
comings of p-values and NHST. This approach is
based on the computation of Bayes factors. To
further encourage the use of Bayesian analysis in
threat conditioning research, we also present our
recently developed R package named condir. Our
package allows the easy analysis of (threat) condi-
tioning data, with a minimal amount of effort.
Collectively, this article provides a non-technical
introduction to Bayesian analysis, especially for
researchers working with the threat conditioning
paradigm, and a tool for computing the relevant
Bayes factors easily.
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1. p-values and NHST for threat conditioning
data

Let us consider a common differential threat condi-
tioning experiment (see Orr et al. 2000 for an exam-
ple with PTSD and non-PTSD individual). Such
experiments typically begin with the baseline assess-
ment of CRs (e.g. fear potential startle) by presenting
singly two CSs: the CS1 and the CS2. Because no
pairing with the US has taken place, no differences
are expected in CRs during CS presentation. The
threat acquisition phase follows, during which the
CS1 is paired with US-presentation, whereas the
CS2 is paired with US-omission. At the end of threat
acquisition, stronger CRs to the CS1, compared to the
CS2, are expected. Usually, experiments also include
a threat extinction procedure, during which the CSs
are not followed by a US, at the end of which similar
CRs towards the CSs typically emerge.

Within a NHST framework, the analyses plan
would entail carrying out three paired sample
t-tests, one for each phase, where CRs between the
CSs are compared. Then, and separately for each
phase, a p-value below a predefined α level (e.g. .05,
or .016 if a Bonferroni correction for multiple testing
is used) would be taken as evidence for presence of
differences in CRs towards the two CSs, whereas a
p-value above or equal to that level as failure to
acquire evidence for differences in CRs towards the
two CSs.

As mentioned above, however, this statistical
approach conveys serious shortcomings (see Cohen,
1994; Krueger, 2001; Krypotos, Blanken, Arnaudova,
Matzke, & Beckers, in press; Loftus, 1996; Trafimow,
2003; Wasserstein & Lazar, 2016; Wagenmakers, 2007
for extensive discussions). To name a few within a
NHST, it is hard to quantify evidence for the null
hypothesis, the stopping plan influences the direction
of the results (i.e. whether p-values cross the α level),
and inferences are based on unobserved data (Cohen,
1994; Wagenmakers, 2007). Given those limitations,
many have suggested alternative approaches such as
model selection (Tibshirani, 1996; Yuan & Lin, 2006)
or Bayesian statistics (Dienes, 2016; Wagenmakers,
Morey, & Lee, 2016; Wagenmakers et al., 2017).
Although each approach comes with pros and cons,
here we extend on Bayesian hypothesis testing, a
Bayesian alternative to NHST, and how it could be
particularly useful in analysing conditioning data.

2. Bayesian hypothesis testing for threat
conditioning data

To better explain Bayesian hypothesis testing, let us
consider the study by Krypotos, Arnaudova, Effting,
Kindt, and Beckers (2015) that used an action ten-
dencies bias modification procedure for reducing

conditioned threat responses. On the first day, parti-
cipants underwent a standard threat acquisition pro-
cedure, with one stimulus (i.e. CS1) always being
followed by electric stimulation and the other stimu-
lus (i.e. CS2) never being followed by electric stimu-
lation. On the following day, participants underwent
a threat extinction procedure, an action tendencies
modification procedure, and a reinstatement
procedure.

For each CS separately, Krypotos et al. (2015)
collected US-expectancy, skin conductance ratings,
startle reflex, and valence ratings. The full data set is
available at https://osf.io/3apxv/, and the original
analyses of these data are reported in Krypotos et al.
(2015). Since here we use this data set for illustrative
purposes, we analyse only a portion of the data.
Specifically, we use the startle reflex data collected
during the threat acquisition phase. The startle reflex
data were collected separately for each trial (i.e. eight
CS1 and eight CS2 trials). In line with Krypotos et al.
(2015), we analysed average startle reflex data across
acquisition trial and separately for each CS. To repli-
cate the results we report here, follow the analyses
steps in Section 3.

2.1 Definition of Bayesian hypotheses

In the case of hypothesis testing, Bayesian analysis
proceeds as in Equation (1):

PðH0jDÞ
PðH1jDÞ
|fflfflfflffl{zfflfflfflffl}

PosteriorOdds

¼ PðH0Þ
PðH1Þ
|fflffl{zfflffl}

PriorOdds

�PðDjH0Þ
PðDjH1Þ
|fflfflfflffl{zfflfflfflffl}

BayesFactor

(1)

First, one needs to define two competing hypotheses
(e.g. the H0 and the H1) prior to taking any collected
data into account. For our example, the H0 would be
defined as the absence of an effect (e.g. no differences
between CRs during the presentation of the CSs or δ
= 0; where δ is the effect size of the population),
whereas the H1 would be defined as the presence of
an effect (e.g. differences between CRs during the
presentation of the CSs or δ � 0). The relative plau-
sibility of these hypotheses prior to seeing the data is
the so-called prior odds. For example, at the end of a
threat acquisition phase, one could expect that the
odds should be higher for the H1, indicating differ-
ences in CRs, than for the H0. However, in Bayesian
hypothesis testing, those odds are often set to 1,
indicating equal odds for both hypotheses (Dienes,
2016; Rouder, Speckman, Sun, Morey, & Iverson,
2009). In our example, those odds were also set to 1.

2.2 Prior distributions

The second step in Bayesian hypothesis testing is the
definition of a prior probability distribution for each
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model parameter (here the δ parameter). These prior
distributions quantify our state of knowledge, before
taking into account any information coming from the
collected data. Prior distributions could be uninforma-
tive, showing no or little prior knowledge, or informa-
tive, which reveal prior knowledge. The selection of
suitable prior distributions should be done carefully.
To date, there have been efforts in developing default
Bayesian tests for common statistical analyses. Let us
take for example the case of the Bayesian default t-test
(Rouder et al., 2009). In this, a Cauchy distribution is
used for the H1 that corresponds to the values of the
predicted effect sizes under this hypothesis. The form
of the Cauchy distribution changes according to
changes in the scale parameter, with higher numbers
resulting in wider distributions. As a result, larger
effects receive higher probabilities of being observed,
compared to narrower distributions. For these default
Bayesian tests, a scale factor of .707 or 1 is often used
(see Rouder et al., 2009; Rouder & Morey, 2012; for
theoretical justification of this choice of prior distribu-
tion). However, it is up to the experimenter to choose
which prior distribution would be more appropriate to
choose given the data at hand. For the case of threat
conditioning, one could opt for different distributions
based on what type of CRs were collected (e.g. psycho-
physiological or subjective). For example, in the meta-
analysis of Duits et al. (2015), lower effect sizes were
reported in the acquisition phase for psychophysiolo-
gical differential responses (i.e. d = −.08) rather than
for differential subjective responses (i.e. d = −.45). This
piece of information can be taken into account when
determining the prior distribution for the H1 (see also
van de Schoot et al., 2014, on how to determine prior
knowledge in general). For our example, we used a
Cauchy distribution for the H1 with a scale parameter
to be equal to .707. This is the default value in many
software programs using the Rouder et al. (2009)
approach for t-tests. Since in Duits et al. (2015) small
effect sizes were reported (i.e. d = −.08), we also inves-
tigated the robustness of our results by also rerunning
our analyses using different scale factors (see sensitiv-
ity analysis section below).

2.3 Consideration of collected data and Bayes
factors

After defining the prior distributions and the prior
odds, the collected data can be considered. This leads
to the updating of the relative plausibility of the
competing hypotheses (i.e. the posterior odds). The
change from the prior odds to the posterior odds is
quantified by the so-called Bayes factor, defined as the
relative likelihood of the data under the competing
hypotheses. For example, a BF10 of 5, where the H1 is
compared to the H0, means that the data are five
times more likely under the H1 than the H0. The

reverse would hold for a BF10 of 1/5, meaning that
the data are five times more likely under the H0 than
the H1. For our example, we found a BF10 of 6.57,
meaning that it is 6.57 times more likely that there
are differences between the CRs (i.e. the H1) than
there are not (i.e. the H0). These outcomes provide
strong evidence that indeed there are differences in
CRs, with mean conditioned startle responses being
substantially higher when the CS1 is presented than
when the CS2 is presented. These Bayes factors are
considered as a Bayesian alternative to NHST (Kass &
Raftery, 1995; Lewis & Raftery, 1997).2

2.4 Advantages of Bayes factors over p-values
and NHST

Bayes factors have a series of advantages compared to
p-values and NHST. First, Bayes factors can quantify
the relative evidence of the H0 compared to the H1

(Dienes, 2014; Rouder et al., 2009). As such, one can
test whether, for example, two CSs evoke similar CRs
during the extinction phase.

Second, Bayesian inference allows one to incorpo-
rate knowledge not present in the data at hand. The
incorporation of such prior knowledge in statistical
analyses is particularly important for threat condi-
tioning research. This field is one of the most strongly
theory-driven branches in clinical psychology. As
such, threat conditioning research is most suitable
for incorporating theoretical claims into the statistical
analyses. Also, informative priors have proven espe-
cially useful in the field of psychotraumatology where
typically small samples are collected. By having infor-
mation coming from the prior distributions in addi-
tion to the collected data, Bayesian statistics can
result in less biased parameter estimates compared
to maximum likelihood estimation (van de Schoot,
Broere, Perryck, Zondervan-Zwijnenburg, & Van
Loey, 2015).

Third, Bayes factors allow one to accumulate data
until enough evidence has been acquired for one of the
competing hypotheses, compared to the other one
(Cornfield, 1966; Deng, Lu, & Chen, 2016;
Schönbrodt, Wagenmakers, Zehetleitner, & Perugini,
in press). Indeed, in Bayesian analysis, more evidence
usually increases support for one of the competing
hypotheses, and not necessarily to a change in the
direction of the results (see Schönbrodt et al., in press).

2.5 Challenges when using Bayes factors

Despite these advantages, there are a series of chal-
lenges that should be taken into account whenever
one uses Bayes factors. First, no matter what the size
of a Bayes factor may be, it cannot provide evidence
for each competing hypothesis, but provides only
relative evidence between two hypotheses (Kruschke,
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2011). As noted by Dienes (2014), ‘This is already
much more than p-values could give us’.

Second, one should be particularly careful when
choosing the prior distributions of the model para-
meters, as different priors will by definition result in
different Bayes factors. An advisable practice for
detecting the influence of the choice of prior distribu-
tions to the results would be to conduct a sensitivity
analysis (Kass & Raftery, 1995; but see Vanpaemel,
2010). In sensitivity analysis, changes in Bayes factors
are reported for different choices of prior distribu-
tions. In the case of the default tests we mentioned
above, one could change the scale factor of the Cauchy
distribution (e.g. set it to 1.4) and compare the result-
ing Bayes factors after different priors have been used.
Although the strength of the evidence will vary with
different priors, one would hope that the direction of
the Bayes factor stays the same. However, fluctuations
in Bayes factors could be severe, with such fluctuations
even leading to different conclusions.

Lastly, one could point to the practical difficulties
when computing Bayes factors for threat condition-
ing data. Until recently, Bayes factors were hard to
compute, requiring expertise in both mathematics
and programming. To date, Bayes factors can be
easily computed via web pages (e.g. www.lifesci.sus
sex.ac.uk/home/Zoltan_Dienes/inference/Bayes.htm,
http://pcl.missouri.edu/bayesfactor), on a mouse-click
basis (e.g. JASP; Love et al., 2015), or using software
packages (e.g. BayesFactor, Morey & Rouder, 2015,
for R). These resources have helped tremendously in
the use of Bayesian analysis across scientific princi-
ples. However, they are still general-purpose pro-
grams, often requiring deep knowledge of how to
correctly use them and interpret their statistical out-
put. Although deep knowledge of the relevant algo-
rithms is strongly advisable, sometimes researchers
lack such knowledge, something that limits their
analytic choices. We attempt to overcome these chal-
lenges by our software package named condir.

3. The condir R package

In the remainder, we show how the easier and more
efficient analysis of (threat) conditioning data can be
realized via condir, a new R package tailored for the
statistical analyses of (threat/fear) conditioning data.
Specifically, as we show below, after providing the
relevant conditioning data, condir can return the
corresponding results, plots, and preliminary results
text in just a few lines of computer code or on a
mouse-click basis. Although our package was primar-
ily designed to enable the easy computation of Bayes
factors, it can also return relevant statistics for NHST,
since this is what is currently used in the threat
conditioning field.

3.1 Installing R

The package condir requires a stable installation of R
(version 3.3.2 or higher). R is a platform independent
programming language and environment, freely available
via the website of the Comprehensive RArchiveNetwork
(CRAN; https://cran.r-project.org/). Instructions on how
to install R can be found on CRAN’s website (R Core
Team, 2016).

3.2 Installing condir

condir is an open source program, distributed freely
under the GPL-3 license. The relevant code can be
found in the following GitHub repository: https://
github.com/AngelosPsy/condir.

For installing condir, a R session has to be started.
This is done simply by double clicking on the R icon,
similar to how most software programs start across
platforms. The R console will appear. Type in the
following commands in the R console:

install.packages (‘condir’). Assuming a reliable
internet connection, condir is now installed.

3.3 Using condir

After installation, the basic functions of condir can be
used using the R console. In order to make our
package more user friendly, we have also built a
Shiny application (Chang, Cheng, Allaire, Xie, &
McPherson, 2015). We now turn to how the Shiny
application can be used. For the readers who are
interested in the use of the R functions, within the
R console, we point to the condir GitHub page
(https://github.com/AngelosPsy/condir), as well as
the help files within the R package.

3.4 Presentation of the condir Shiny application

For initiating a new analysis section, type the condir::
csShine() command into the R console. After that, a
window on the default internet browser of each user
will appear. Alternatively, use our Shiny application by
visiting https://utrecht-university.shinyapps.io/Condir/.

To load the relevant data, click on the top left
button. The user can now select the relevant data
file. Currently, condir supports data files with .txt, .
csv, and .sav extensions.3 After selecting the relevant
data file and clicking ‘OK’, the data will be loaded and
presented in the ‘Data’ tab (see Figure 1). For illus-
tration, here we analyse a portion of the data by
Krypotos et al. (2015) that we have described above.

By clicking on the ‘Results’ tab, the user can select
which stimulus will serve as CS1 and which stimulus
as CS2 (here ‘AcqPemg’ and ‘AcqMemg’ respectively;
see Figure 2 for the corresponding results). By doing
this, the relevant descriptive statistics are presented,
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together with the frequentist and Bayesian results.
The frequentist results include, among others, the
name of the performed test (in this case a paired
samples t-test), the relevant t-statistic (i.e. 2.92), the
p-value (i.e. .006),4 and the effect size (Cohen’s
d = 0.46, small effect). Under the ‘Bayesian results’,
the Bayesian results are reported for the default
Bayesian paired samples t-test [, Speckman, Sun,
MoreyIversonRouder.]. The Bayesian results include
the report of the used scale factor (i.e. .707), the BF10
(i.e. 6.57) and the BF01 (i.e. 0.15).

5 Of importance, the
t-test was performed without being explicitly speci-
fied by the user; the choice was made by condir based
on the provided data.

Apart from analyses between two stimuli, condir
can also accommodate group analyses for up to two
groups. This can be done by simply choosing which
column includes the group allocation by clicking on
the relevant option in the ‘Results’ tab. In the

presence of groups, condir performs an independent
samples t-test, comparing group performance to the
difference in CRs for the two CSs.

A visualization of the variable means6 can be
found on the top part of the ‘Plots’ panel. In
Figure 3 we give an example of the plots that were
generated from our main analysis. Also, for visualiza-
tion of the sensitivity analysis, a robustness plot can
be found on the bottom panel of ‘Plots’.7 There, we
observe that with higher values for the scale para-
meter for the Cauchy distribution (see x-axis), the
BF10 decreases after the scale factor receives values
above .3 (see y-axis).8 For our results, we see that the
higher the scaling factor of the Cauchy distribution,
the less evidence for the data coming from the H0

instead of the H1. This is logical given that wider
priors (in this case Cauchy priors with higher scale
factors) result in more support for the H0 (Rouder
et al., 2009).

Figure 1. Example screen shot of the data tab of the condir Shiny app. The data refer to the main analyses we report in the
main text.

Figure 2. Example screen shot of the results tab of the condir Shiny app. The results refer to the main analyses we report in the
main text.
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Lastly, an automatic report of the results is gener-
alized in the ‘Summary’ tab (see Figure 4 for the
results of our main analysis). Specifically, in the first
panel the summary of the main results (i.e. frequen-
tist and Bayesian statistics) are presented. In the
second panel, the results of the robustness test are
presented. If the user desires an interpretation of the
results, they can click the ‘TRUE’ option in the
‘Should the results be interpreted?’ question. This
will extend the results report (not shown here) so
that the p-values are now interpreted as significant
or non-significant, and the Bayesian results are inter-
preted based on the categories that are suggested in

the literature (for more information on Bayes factor
categories, see Jeffreys, 1961, and Wetzels et al.,
2011). We note that this is a report based on the
numerical values. Researchers are free to question or
ignore the interpretation of the outcome.

For our example the results converge, as both p-
values and Bayes factors point towards the presence
of differences between the CSs. However, this is not
the case when other variables are used. For example,
rerunning the analyses for the ‘ReinPemg’, as CS1,
and ‘ReinMemg’, as CS2, would result in a significant
p-value (t(39) = 2.185, p = .035, Cohen’s d = 0.35).
Yet, the corresponding BF10 gives only small support

Figure 3. Example screen shot of the plots tab of the condir Shiny app. The figures refer to the main analyses we report in the
main text.

Figure 4. Example screen shot of the Summary tab of the condir Shiny app. The summary results refer to the main analyses we
report in the main text.
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to the data coming from the H1 relative to the H0

(BF10 = 1.43). So, although the p-value suggests that
there are CR differences between the two CSs, the
corresponding Bayes factor provides only little sup-
port for the H1, compared to the H0. Some scientists
have suggested that BFs between 1 and 3 are categor-
ized as ‘not worth more than a bare mention’
(Jeffreys, 1961). As such, one should continue collect-
ing data so that more evidence is accumulated for the
two hypotheses, whereas the NHST results suggested
that there is enough evidence to reject the H0.

4. Discussion

To date, threat conditioning researchers base their
statistical inferences on p-values and NHST. In the
first section of this paper we listed the main short-
coming of this statistical approach when analysing
threat conditioning data. Then, we presented how
those shortcomings can be surpassed by the adoption
of BHT and Bayes factors. Specifically, and in con-
trast to p-values and NHST, the presented Bayesian
approach is able to provide evidence for the H0 (e.g.
when testing CRs at the end of a threat extinction
phase), and allows the accumulation of evidence until
adequate evidence has been gathered for either the H0

(e.g. there are no between stimuli differences) or the
H1 (e.g. there are differences between stimuli). As
such, the adoption of Bayes factors can result in
richer data conclusions; even in the case of a null
result, outcomes can be interpreted, enabling the
better investigation of the working mechanisms of
psychopathogenesis and psychopathology reduction.

To encourage (threat/fear) conditioning research-
ers to use Bayesian statistics in their research, we have
presented the recently developed R package, condir.
As we have shown, condir can provide output for both
BHT and NHST, generate the relevant plots, as well as
produce a basic text of the results, with a few mouse
clicks. Of importance, the tests do not need to be
explicitly defined by the user, but they are automati-
cally selected by condir. By automating many routine
tasks, condir could prove to be an important tool for
the more efficient analyses of threat conditioning data.

At this stage, condir can perform basic statistical
analyses (i.e. paired samples t-test and independent
samples t-test). More statistical tests could be added
in future versions. For example, by implementing
analysis of variance models in condir, conditioned
responses to more than two stimuli, or across more
than two groups, could be performed. condir does
not provide any information about individual differ-
ences in conditioning; individual differences can be
explored with more complicated statistical models
than the ones presented here (see Gazendam et al.,
2015). In order to encourage the further development
of condir, the software code is open, allowing

researchers to review and contribute with additional
code. Also, any researcher can request additional
features by using the issues page in GitHub (https://
github.com/AngelosPsy/condir/issues). Our ultimate
goal is to make condir a hub where common
(Bayesian) statistical analyses for threat/fear condi-
tioning will be stored and shared across our field.

We designed condir for the analysis of conditioning
data, with minimal amount of effort. There are other
statistical programs though that can prove also useful
when conducting Bayesian analysis. JASP, for example,
provides an excellent resource for Bayesian and fre-
quentist statistics. At the same time, in its current
form, JASP requires from the users to choose their
statistical analyses and it does not generate an auto-
matic report of the results. Other software programs
(e.g. Stan or JAGS) are also powerful for Bayesian
statistics but users must define the models themselves,
something that requires both statistical and program-
ming knowledge. The amount of effort needed to per-
form analyses for conditioning data in condir,
compared to other packages, is much less, with condir
being able to give a full results report (both for fre-
quentists and Bayesian statistics), with the correspond-
ing plots, in seconds after data input; this is much faster
than the aforementioned software programs.

It should be noted that Bayesian hypothesis testing
is not the only alternative for overcoming the short-
comings of NHST. For example, it has been suggested
that instead of basing statistical inferences on p-values,
one should consider effect sizes or confidence intervals
(e.g. Cumming, 2014; for Bayesian alternatives to these,
see Kruschke and Liddell, in press). Although useful,
here we decided to focus on BHT as this is a Bayesian
alternative to NHST, which is commonly used in our
field. For thorough discussions of the advantages and
disadvantages of different alternatives to NHST, we
refer to Anderson, Burnham, and Thompson (2000);
Dienes (2008); Gardner and Altman (1986) and
Wagenmakers et al. (2016).

We believe that there is enough reason for threat
conditioning researchers to use Bayesian analyses,
instead of the commonly used statistical inference.
We have provided both some key theoretical reasons
for doing that, as well as a new tool that enables such
analyses with a small amount of effort. For all the
reasons mentioned above, we hope our research field
switches to this type of inference.

Notes

1. Note that in the literature threat conditioning is also
referred to as fear conditioning.

2. Since an extended discussion of Bayesian inference is
beyond the scope of this article, we point interested
readers to the work by Dienes (2011), Hoijtink (2013),
and Rouder et al. (2009).
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3. When loading data files with .sav extension, R returns an
encoding warning. This warning can be safely ignored

4. For illustrative purposes, we used a two-tailed test
here, which is the default option at condir. One
could also choose to use one-tailed test by clicking
on the corresponding option.

5. For the complete description of what every column
stands for, we refer to the help files of the ‘condir::
csCompare’ in R. You can access the help page by
typing in ‘?condir::csCompare’ in an R console.

6. This refers to the two variables included in the paired
samples t-tests. In the case of the independent samples
t-test, condir returns the means of the two variables, as
well as the difference for these variables, separately for
each group.

7. For the robustness plot and the sensitivity analysis, we
used the default options of the BayesFactor package for
determining the scale parameter of the Cauchy. Other
scale parameters can be used by using the relevant
functions when using condir via the R console. Note
that the robustness plot is based on the equivalent plot
returned when using JASP.

8. If users want to plot the BF01, instead of the BF10, the
BF01 can be clicked.
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