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Signaled active avoidance (SigAA) is the key experimental procedure for studying the acquisition of instrumental responses

toward conditioned threat cues. Traditional analytic approaches (e.g., general linear model) often obfuscate important in-

dividual differences, although individual differences in learned responses characterize both animal and human learning

data. However, individual differences models (e.g., latent growth curve modeling) typically require large samples and

onerous computational methods. Here, we present an analytic methodology that enables the detection of individual differ-

ences in SigAA performance at a high accuracy, even when a single animal is included in the data set (i.e., n = 1 level). We

further show an online software that enables the easy application of our method to any SigAA data set.

[Supplemental material is available for this article.]

Signaled active avoidance (SigAA) is the dominant experimental
paradigm for studying instrumental defensive responses. During
SigAA, an animal is typically placed in a shuttle box where it is ex-
posed to pairings of a neutral stimulus (CS; e.g., a sound) with an
aversive unconditioned stimulus (US; electric stimulation), with
the animal being able to prevent the US by shuttling (i.e., crossing
fromone side of a divided chamber to the other) during the CS pre-
sentation (Mowrer and Lamoreaux 1942; Solomon and Wynne
1953). This simple procedure has beenwidely used across the fields
of psychology and neuroscience for uncovering the theoretical
principles and the neural underpinnings of (maladaptive) avoid-
ance (LeDoux et al. 2017).

Statistical inferences of SigAA data are usually based on the
analysis of average response rates, where a general linear model is
fitted on the animals’ mean responses (i.e., the traditional meth-
od). Despite the popularity of this approach, there are at least
two limitations with it.

First, by averaging responses across the whole sample, the
traditional method fails to account for individual differences in
avoidance acquisition, with any deviations from the mean being
essentially treated as noise (Lonsdorf and Merz 2017). However,
there is good evidence that there is individual heterogeneity in
the ability to acquire and extinguish instrumental responses to
aversive stimuli (Galatzer-Levy et al. 2013; Galatzer-Levy 2014).
Importantly, such heterogeneity has long been hypothesized
to underlie fluctuations in psychological response to trauma
(Bonanno et al. 2012).

Second, the traditional method fails to account for the phase-
shift from a reactive threat detection state, where the animal
acquires the CS–US associations (i.e., “Pavlovian learning”) and
freezes in presence of the CS, to an active state, where the animal

avoids the US presentation when the CS is presented (i.e., “instru-
mental learning”). Empirically, trajectories of individual differenc-
es characterized by these phase-shifts have been shown to better
reflect avoidance acquisition than a linear pattern (Galatzer-Levy
et al. 2014). This phase-shift (see above) is also predicted by the
dominant theoretical accounts of avoidance learning (for reviews,
see Krypotos et al. 2015; LeDoux et al. 2017).

Galatzer-Levy et al. (2014) showed that these shortcomings
can be surpassed by using “latent class growth analysis” (LCGA),
a cluster analytic method for identifying subgroups, within the
sample data, defined by their rate of response change over time.
LCGA refers to a range of statistical techniques that are used for es-
timating between individual differences, based on the data collect-
ed for each individual at multiple time points (i.e., repeated
measures) (Curran et al. 2010). Specifically, LCGA uses repeated
measurements per individual for classifying them into different
groups, with each group showing heterogeneous response patterns
from all other groups. Using LCGA, Galatzer-Levy et al. (2014)
showed that the sample data could be reliably grouped into dif-
ferent subgroups, with each subgroup exhibiting a different rate
of avoidance learning pattern (e.g., avoidance after one, two
days etc.) or failing to learn to avoid within the allotted time.
Importantly, the pattern of responses within the subgroups did
not resemble the average group pattern.

The results above are important for at least two reasons.
First, the LCGA results provided strong evidence of observable het-
erogeneity within the population as animals either did not learn to
avoid at all, or acquired the instrumental response at different
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learning rates. Second, the subgroups that learned to avoid exhib-
ited the predicted step-like pattern where, after acquiring the
avoidance response, animals reached asymptotic levels of avoid-
ance. As such, the theoretical prediction of a transition point
from freezing to avoidance responses was supported.

Despite the advantages of LCGA over the traditional method
for analyzing SigAAdata, LCGA comeswith onerous sample size re-
quirements (Hertzog et al. 2006), diminishing their relevance to
animal research which typically uses small samples to examine
fine-grained mechanisms. In order to overcome these shortcom-
ings, we have developed a principled method for categorizing ani-
mals in different trajectory learning clusters that is based on LCGA
but has no high sample requirements. Our method is based on the
definition of a predetermined inflection point after which animals
exhibit asymptotic avoidance responses.

For determining this inflection point, we first reanalyzed the
second study of Galatzer-Levy et al. (2014). Full details about the
experimental setup and statistical analyses of this data set are
described in the original study. In short, 186 naive male Sprague-
Dawley rats performed a signaled active avoidance task as ex-
plained above, for 5 d. The final LCGA solution suggested that
the animals could be classified into four groups: Modal Avoiders
(37% of the sample), Rapid Avoiders (22% of the sample), Slow
Avoiders (22% of the sample), and Non-Avoiders (20% of the sam-
ple) (see Fig. 1).

As a further check of the LCGA classes, we followed up the re-
sults of Galatzer-Levy et al. (2014) by computing receiver operating
characteristic (ROC) curves (Metz 1978). ROC is a graphical plot
used to detect how well an algorithm is in classifying different in-
dividuals in two separate groups (Brown and Davis 2006). ROC
curves are routinely used in, among others, self-report develop-
ment for testing how accurately a scale can distinguish individuals
with and without a disorder (e.g., depression). The most common
measure for describing a ROC curve is by computing the area under
it. Values between 0 and 0.60 indicate failure of the test to discrim-
inate between a random case to a noncase whereas values closer to
1 indicate excellent discrimination. For these analyses, we com-
pared each class defined by the LCGA, with the rest of the classes.

The results suggest that the group of animals were accurately
placed into categories that can be adequately separated from
each other (all ROC values >0.80; detailed values at Table 1 of
the Supplemental Material and on the ROC plots of the Supple-

mental Material). Based on these outcomes, we determined that
the animals can be categorized into the different groups based on
the rate of avoidance in any single day. Specifically, if the animal
avoided the 55% of the trials on any single day (e.g., day 3) then
this animal could be determined that has learned to avoid on
that day, and be categorized accordingly (e.g., day 3 avoider). We
followed up these analyses with also testing all inflation points
from 5% to 100% (see inflation point plots in Supplemental
Material). These results largely confirm the idea that 55% is a reli-
able point for categorizing animals in any of the categories.
Specifically, by having this inflation point we ensured that the an-
imals did not perform below chance levels, there were animals cat-
egorized on the first day (see Galatzer-Levy et al. 2014) and that
there are at least two animals per category.8

Then, we tested the generalizability of our method by
applying the predetermined inflection point (i.e., 55% of the trials
being avoided on any single day) to a new independent, and un-
published, data set. Data set 2 was derived from a study with pa-
rameters similar to the experiments that produced data set 1. As
previously, the subjects of this study were male Sprague-Dawley
rats. Training occurred over four daily sessions. The first trial of
the first session was Pavlovian, in which a tone CS (15 sec, 70
db) was followed by a shock US (0.5 sec, 0.7 mA) regardless of
the animal’s behavior. On each subsequent trial, shuttling during
the CS caused the US to be omitted and replaced with a blinking
light confirmation signal. Each of the four daily sessions involved
30 of these avoidance trials. One important element of this study is
that shuttling during the CS caused omission of the shock US, as
opposed to termination of the CS and omission of the US, both
of which occurred in the study that produced data set 1. In addi-
tion, this study did not involve an escape contingency. Instead,
the full 0.5 sec duration of the US occurred on every trial in which
the animal failed to perform the avoidance response (shuttling).

In Figure 2 we plot the results of each group for each day. The
groups are defined based on when, if ever, was the first time they
crossed the predetermined inflection point (55%). In Figure 1 of
the supplemental material we plot, for each day, the mean results
of the animalswhohad crossed the predetermined inflection point
(55%), compared to the animals that had not. For investigating
how well the predetermined inflection point (55%) discriminated
groups from each other, we carried a series of “default” Bayesian
t-tests (Morey and Rouder 2015; Rouder et al. 2009) in which we
compared, separate for each day, the mean avoidance of each
group, to the mean distance between the mean responses of
Avoiders and Non-Avoiders. We denote the relative support of
the data under the alternative hypothesis, compared to the null hy-
pothesis, by BF10.

The size of BF10 (detailed results in the Supplemental Table 2)
suggests that there is a clear discrimination between classes.
Specifically, apart from the Avoiders on the first day (BF10=
6.595), all BF10s provided strong (BF10>18.755) or unquestion-
able (BF10>100) support from the alternative hypothesis (i.e., dif-
ferences between themean responses of the group compared to the
mean distance between the two groups) compared to the null hy-
pothesis (i.e., no differences between the mean responses of the
group compared to the mean distance between the two groups).
Collectively, these results suggest that the predetermined inflec-
tion point (55%) can be successfully applied to other data sets
and meaningfully categorize groups of learners.

Lastly, we tested the split-half reliability of our method by fit-
ting it to two random halves of a subset of data presented in

Figure 1. Visualization of the latent groups as identified by Galatzer-
Levy et al. (2014). Each point summarizes the mean responses for each
group on a single day. Error bars denote standard errors. This figure is a
reproduction of Figure 1 in Galatzer-Levy et al. (2014).

8Please note that although the 60% inflation point also fit these criteria, the dif-
ferences between the 55% and the 60% inflation points is the categorization of
just five animals.
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Ramirez et al. (2015) (procedural details can be found in the origi-
nal study). We present the data of 52 animals who undertook an
avoidance learning procedure for 3 d.9 In order to assess the reli-
ability of our results, we split the data randomly into two equal
data sets. We visualize the results of each data half on Figure 3
and in Supplemental Figure 2.On Supplemental Table 3we present
the Bayes factors for each half of the data set.

Collectively, the split-half results showed that the analyses of
bothhalves resulted in similar outcomes. Specifically, the proposed
predetermined inflection point (55%) was able to classify rats as
Avoiders and Non-Avoiders, with the Bayes factors providing
good evidence for most of the groups, and the number of rats per
group being largely similar. Collectively, these results show that
the suggested predetermined inflection point (55%) is reliable.

The presented method overcomes the key disadvantages
of traditional analyses of SigAA. Specifically, by following our
method, researchers are able to detect the expected learning
heterogeneity within the tested sample, as well as the predicted
step-wise pattern as suggested by individual differences analyses
and most theoretical models of avoidance learning. As such, our
method has many benefits of the LCGA for SigAA data but comes
without requirements for large sample size in LCGA (Hertzog et al.
2006).

Our method can have significant impact on our understand-
ing of mechanisms underlying SigAA as methods such as continu-
ous recordings of neurons can now be utilized to understand

change from before to after phase shifts in behavior, and in the rel-
evant brain regions of interest (e.g., with the method of optoge-
netics or chemogenetics). Further, manipulations can be utilized
to determine if they cause a shift between active avoidance and
the reactive threat detection state. Both of these approaches are rel-
evant for understanding mechanisms of health and pathology in
response to environmental stress, but are not accessible when ex-
amining a linear trajectory of change over time.

To make our methodology readily available to every research-
er, we have created a user friendly and free software that is available
at https://utrecht-university.shinyapps.io/aacc/. Given its intuitive
design, every researcher can use our application easily with the rel-
evant outcomes being available in seconds. The wide application
of ourmethodology to SigAA data sets could lead to significant the-
oretical and clinically relevant advancements.

Here, we presented our approach using conditioning avoid-
ance data. However, our approach could be extended for other
data sets, even across species. For example, it could be tested
whether such a predetermined inflection point (55%) could be de-
tected also in human avoidance data set (e.g., in Vervliet and
Indekeu 2015). Given the recent interest in avoidance learning in
humans, answering such questions seems timely. In addition, it
would be easy to see our method extended to other responses
(e.g., skin conductance or the startle reflex), such as for detecting
when learning has been achieved during a Pavlovian threat acqui-
sition phase.

Our data-driven method comes to be added to other statisti-
cal methods for detecting differences in learning (e.g., Bush et al.
2007; Reznikov et al. 2015; King et al. 2017; Shumake et al. 2018).
Although an one-to-one comparison among the different ap-
proaches is beyond the scope of this paper, two characteristics
that differentiate our method from previous methods is that

A

B

Figure 2. (A) Mean number of avoids for the second data set. Error bars denote standard errors. (B) Individual values for each subgroup, for the second
data set.

9Please note that after the third day, some of the rats were infused with musci-
mol or vehicle into the nucleus accumbens shell, or the nucleus accumbens
core. The data collected during and after the treatment were not included in
our data analyses and will not be described further.
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(a) we refer to avoidance learning data, something that previous
studies have not addressed adequately, and (b) that our method
can be used even with small samples. In any case, we believe that
ourmethodcomeshandy in thearsenal ofmethods that researchers
canuse foraddressing individual differences in learning.Webelieve
that more studies in this area of research is timely.

Despite the advantages of ourmethod over the traditional ap-
proach,we acknowledge three potential issues. First, in case of large
samples, we would urge researchers to still take advantage of the
flexibility of the LCGA analyses. Second, it could be argued that
any use of a cutoff (here the predetermined inflection point,
55%) is debatable, especially when participants perform close to
the cutoff scores. Third, our method considers only sum of avoid-
ance responses per each training day. At the same time, given the
advantages of our method (see above) we do believe that there is
little reason not to use our methodology when small sample sizes
are used, with larger studies further testing and validating the ini-
tial conclusions.

In sum, we have presented a principled way, with a user-
friendly software, to classify animals undergoing a SigAA into dis-
tinct subpopulations that overcomes many of the limitations of
the traditional analytic methods. As we have argued above, the
wide application of our methodology to SigAA could lead to signif-
icant new theoretical and mechanistic insights.
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